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1. Introduction and Definitions

This article explores the connection between 2×2 complex matrices and rotations
of ordinary 3D space. Specifically, I will show that SU(2), the group of 2×2 special
unitary matrices,1 can act on the sphere via rotations, with each possible rotation
corresponding to two SU(2) matrices. The group of rotations of the sphere (or
equivalently, of 3D space) is denoted SO(3), so another way of stating the above is
that there is a surjective two-to-one homomorphism from SU(2) to SO(3).

This two-to-one correspondence is very important in quantum mechanics, where
certain state vectors (known as “spinors”) transform under SU(2) matrices, while
other state vectors (known as “vectors”) transform under the corresponding SO(3)
matrices. For example, the spin state of a fermion (a class of particles that includes
electrons) is modeled as a spinor, while the spin state of a boson (a class of particles
that includes photons) is modeled as a vector.

Although it is possible to demonstrate the correspondence between SU(2) matri-
ces and rotations in a number of ways (quaternions, Clifford algebras, Pauli vectors,
homogenous polynomials, and so on2), the proof in this article makes use of the
SU(2) matrices’ identity as complex matrices, which have a natural action on com-
plex projective space. By defining a bijection between the complex projective line
and the unit sphere, we obtain an action of SU(2) (and in fact, all of GL(2,C))
on the sphere. I do not assume much prior knowledge on the part of reader (only
the basics of linear algebra and the complex numbers), so this article also serves
as an introduction to (one-dimensional) projective space, Möbius transformations,
and the Riemann sphere.

Before getting into the main proof, I will go over some preliminary definitions.

1If you don’t know what “special unitary” means, see Definition 1.2 below.
2For an elementary exposition of the first three approaches, see [1]. For the homogenous

polynomial approach, see [2, Example 4.10] with m = 2.
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Definition 1.1. The conjugate transpose of a complex matrix A is the matrix
A† constructed by transposing A and then complex-conjugating each entry. For
example, (

1 3i
1 + i 2− i

)†

=

(
1 1− i

−3i 2 + i

)
.

Remark. Note that (A†)
†
= A for all matrices A. Note also that (AB)

†
= B†A†;

this property carries over from the corresponding property of the transpose.

Definition 1.2. A square complex matrix A is unitary if AA† = I, where I is
the identity matrix, and special unitary if it also has determinant 1. The set of
n× n special unitary matrices is denoted SU(n).

Lemma 1.3. SU(n) is a group. That is, SU(n) includes the identity matrix, and
is closed under composition and inversion.

Proof. I is special unitary because det(I) = 1 and II† = II = I. Furthermore, if
A and B are both special unitary, then det(AB) = det(A) det(B) = 1 · 1 = 1, and

AB(AB)
†
= ABB†A† = AIA† = AA† = I,

soAB is special unitary. Finally, ifA is special unitary, then det(A−1) = det(A)
−1

=
1−1 = 1, and

A−1(A−1)
†
= A−1(A†)

†
= A−1A = I,

so A−1 is special unitary. □

In the following two sections, I will define bijections between various spaces,
which will then give rise to the connection between SU(2) and SO(3). The primary
purpose of Section 2 is to give the reader some intuition for the concepts in Section 3,
which deal with the complex numbers rather than the real numbers.

2. Real Projective Space

Definition 2.1. The real projective line RP1 is the set of lines through the
origin in R2. The line passing through a point (x, y) ̸= (0, 0) is denoted [x : y].
Note that [x : y] = [kx : ky] for all k ̸= 0, since the points (x, y) and (kx, ky) fall
on the same line.

Lines through the origin in R2 (i.e. elements of RP1) are identified uniquely by
their slope, which is an element of R ∪ {∞}. The slope of the line [x : y] is y/x, or
∞ if x = 0. (Note that ky/kx = y/x, so the slope is well-defined.) This constitutes
a bijection between RP1 and R∪ {∞}, the latter of which I will henceforth denote

R̂.
R̂ is equivalent to the unit circle via stereographic projection, as shown in Fig-

ure 1. Given a point x ∈ R, we draw a line in R2 connecting (x, 0) and (0, 1). This
line intersects the unit circle at exactly one point, the coordinates of which can be
calculated via elementary algebra:(

2x

x2 + 1
,
x2 − 1

x2 + 1

)
.

This process creates a bijection from R to S1 − {(0, 1)}, where S1 denotes the

unit circle. To complete the bijection, we can map ∞ ∈ R̂ to the point (0, 1), which
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Figure 1. The bijection between S1 (green) and R̂ (red), defined
by stereographic projection. The point (0, 1) ∈ S1 corresponds to

∞ ∈ R̂.

is the limit of the above expression as x tends to infinity. The inverse function,
which maps S1 to R̂, is even easier to compute:

(x, y) 7→ x

1− y
, (0, 1) 7→ ∞.

In summary, we have constructed a chain of bijections RP1 ≃ R̂ ≃ S1, the first via
taking the slope, and the second via stereographic projection.

3. Complex Projective Space

Now that we have an understanding of RP1, it is time to investigate CP1, which
is defined analogously.

Definition 3.1. The complex projective line CP1 is the set of complex lines
through the origin in C2. The line passing through a point (x, y) ̸= (0, 0) is denoted
[x : y] and is equal to {(kx, ky) : k ∈ C}. Note that [x : y] = [kx : ky] for all k ̸= 0.

As in RP1, an element [x : y] ∈ CP1 is determined by its slope y/x ∈ Ĉ =
C ∪ {∞}. However, from now on, we will actually use the coslope x/y, since that
is standard when working with Möbius transformations, which I will introduce in
the next section.

Lemma 3.2. The coslope function f : CP1 → Ĉ, [x : y] 7→ x/y is a bijection. Here

we define x/0 to be ∞. The inverse of f is given by g : Ĉ → CP1, which sends
x ∈ C to [x : 1] and ∞ to [1 : 0].

Proof. There are four cases to check:

[x : y]
f7−→ x

y

g7−→ [xy : 1] = [x : y] if y ̸= 0

[x : 0]
f7−→ ∞ g7−→ [1 : 0] = [x : 0] if x ̸= 0

x
g7−→ [x : 1]

f7−→ x
1 = x if x ∈ C

∞ g7−→ [1 : 0]
f7−→ 1

0 = ∞. □
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Just as R̂ is equivalent to the unit circle, Ĉ is equivalent to the unit sphere,
which we denote S2. The maps between Ĉ and S2 can be derived from the maps
between R̂ and S1 given in the last section. Explicitly, φ : Ĉ → S2 is given by

x+ iy 7→
(

2x

r2 + 1
,

2y

r2 + 1
,
r2 − 1

r2 + 1

)
, ∞ 7→ (0, 0, 1)

and φ−1 : S2 → Ĉ, which geometrically is stereographic projection, is given by

(x, y, z) 7→ x+ iy

1− z
, (0, 0, 1) 7→ ∞.

In the formula for φ, r is defined as |x+ iy|, so r2 = x2 + y2. Note that φ does in
fact map into the unit sphere, since

(2x)
2
+ (2y)

2
+ (r2 − 1)

2

(r2 + 1)
2 =

4r2 + r4 − 2r2 + 1

r4 + 2r2 + 1
= 1.

One can mechanically verify that φ and φ−1 are in fact inverses, but this is rather
tedious, so I will omit it.

4. Möbius Transformations

Invertible matrices map lines to lines, so there is a natural action of GL(2,C) —
the group of invertible 2× 2 complex matrices — on CP1. Explicitly, this action is
given by the following:(

a b
c d

)
· [x : y] = [ax+ by : cx+ dy].

In the last section we constructed bijections CP1 ≃ Ĉ and Ĉ ≃ S2. We can use
these bijections to convert the action of GL(2,C) on CP1 into actions on Ĉ and S2.

The action on Ĉ is given by(
a b
c d

)
· x
y
=

ax+ by

cx+ dy
=

ax
y + b

cxy + d
,

or in other words (
a b
c d

)
· z =

az + b

cz + d
.

A transformation of this type — that is, a quotient of two linear polynomials — is
called a Möbius transformation.

Unfortunately, the action of GL(2,C) on S2 is much more difficult to give an
explicit formula for. You could do so, of course, by applying φ−1, followed by a
general Möbius transformation, followed by φ, but the resulting formula is rather
complicated and not of much use. Instead, I will show that three specific classes of
matrices act as rotations of the sphere around the coordinate axes, and then show
that these matrices generate SU(2).

Lemma 4.1. Matrices of the form

Uz(θ) =

exp
(
i θ2
)

0

0 exp
(
−i θ2

)


rotate the sphere by an angle of θ about the z-axis.
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Proof. As a Möbius transformation, Uz(θ) takes z ∈ Ĉ to

exp
(
i θ2
)
z

exp
(
−i θ2

) = exp(iθ)z.

In other words, Uz(θ) simply rotates the complex plane by an angle of θ (and
leaves ∞ fixed). Therefore, on the sphere, Uz(θ) acts by applying a stereographic
projection, then rotating the resulting plane by θ, and then applying the reverse
stereographic projection. Clearly, the result is that the sphere is rotated by θ about
the z-axis. □

Lemma 4.2. Matrices of the form

Ux(θ) =

 cos
(
θ
2

)
i sin

(
θ
2

)
i sin

(
θ
2

)
cos

(
θ
2

)


rotate the sphere by an angle of θ about the x-axis.

Proof. A rotation by θ about the x-axis is given by the function

R(x, y, z) = (x, y cos θ − z sin θ, y sin θ + z cos θ).

This corresponds to the transformation on Ĉ given by φ−1 ◦R ◦ φ, that is

x+ iy 7→ φ−1

(
R

(
2x

r2 + 1
,

2y

r2 + 1
,
r2 − 1

r2 + 1

))
= φ−1

(
2x

r2 + 1
,
2y cos θ − (r2 − 1) sin θ

r2 + 1
,
2y sin θ + (r2 − 1) cos θ

r2 + 1

)
=

2x+ i
(
2y cos θ − (r2 − 1) sin θ

)
r2 + 1

(
1− 2y sin θ + (r2 − 1) cos θ

r2 + 1

)−1

=
2x+ i

(
2y cos θ − (r2 − 1) sin θ

)
r2 + 1− 2y sin θ − (r2 − 1) cos θ

=
2x+ i

(
2y cos θ − (r2 − 1) sin θ

)
r2(1− cos θ) + 1 + cos θ − 2y sin θ

,

where r2 = x2 + y2. It remains to show that the expression above is actually the
Möbius transformation

cos
(
θ
2

)
(x+ iy) + i sin

(
θ
2

)
i sin

(
θ
2

)
(x+ iy) + cos

(
θ
2

) .
To see this, we perform complex-number division and then apply the double-angle
identities:

cos
(
θ
2

)
(x+ iy) + i sin

(
θ
2

)
i sin

(
θ
2

)
(x+ iy) + cos

(
θ
2

) =
x cos

(
θ
2

)
+ i

(
y cos

(
θ
2

)
+ sin

(
θ
2

))
cos

(
θ
2

)
− y sin

(
θ
2

)
+ ix sin

(
θ
2

)
=

x
(
cos2

(
θ
2

)
+ sin2

(
θ
2

))
+ i

[
y
(
cos2

(
θ
2

)
− sin2

(
θ
2

))
− (r2 − 1) cos

(
θ
2

)
sin

(
θ
2

)]
r2 sin2

(
θ
2

)
+ cos2

(
θ
2

)
− 2y cos

(
θ
2

)
sin

(
θ
2

)
=

x+ i
(
y cos θ − 1

2 (r
2 − 1) sin θ

)
1
2r

2(1− cos θ) + 1
2 (1 + cos θ)− y sin θ

=
2x+ i

(
2y cos θ − (r2 − 1) sin θ

)
r2(1− cos θ) + 1 + cos θ − 2y sin θ

. □
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Lemma 4.3. Matrices of the form

Uy(θ) =

 cos
(
θ
2

)
sin

(
θ
2

)
− sin

(
θ
2

)
cos

(
θ
2

)


rotate the sphere by an angle of θ about the y-axis.

Proof. Note that Uy(θ) = Uz

(
π
2

)
Ux(θ)Uz

(−π
2

)
. (This is straightforward to verify.)

Therefore, Uy(θ) acts on the sphere by first rotating it π/2 radians clockwise about
the z-axis, then rotating it θ radians about the x-axis, and then rotating it π/2
radians counterclockwise about the z-axis. The overall effect is a rotation by θ
about the y-axis. □

5. Putting Things Together

The results of the last section imply that the group generated by the three
families of matrices Ux(θ), Uy(θ), and Uz(θ) acts on the sphere via rotations. It is
easy to check that these matrices are all in SU(2), and one can in fact show that
they generate SU(2); see Lemma 5.2 below. Before proving that, however, it is
necessary to characterize the elements of SU(2).

Lemma 5.1. Every special unitary 2× 2 matrix is of the form(
a −c
c a

)
where a, c ∈ C and |a|2 + |c|2 = 1.

Proof. Suppose that

A =

(
a b
c d

)
is special unitary; that is, AA† = I and det(A) = 1. Note that(

a b
c d

)(
d −b
−c a

)
=

(
det(A) 0

0 det(A)

)
= I.

Since matrix inverses are unique, this implies that the second matrix above is
actually A†; that is, (

d −b
−c a

)
=

(
a c

b d

)
,

or in other words, d = a and b = −c. The fact that det(A) = 1 then becomes
|a|2 + |c|2 = 1. □

Lemma 5.2. The three families of matrices Ux(θ), Uy(θ), and Uz(θ) generate
SU(2). Therefore, SU(2) acts on the sphere via rotations.

Proof. Let A ∈ SU(2) be any special unitary matrix. By Lemma 5.1,

A =

(
a −c
c a

)
with |a|2+|c|2 = 1. The requirement that |a|2+|c|2 = 1 can be restated as “(|a|, |c|)
is a point on the unit circle”, which implies that |a| = cos(β) and |c| = sin(β) for
some angle β. So, writing a and c in polar form, we have

a = cos(β)eiα and c = sin(β)eiγ
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for some α and γ. Now note that

Uz(α− γ)Uy(−2β)Uz(α+ γ) =

(
cos(β)eiα − sin(β)e−iγ

sin(β)eiγ cos(β)e−iα

)
= A. □

All that remains is to show that the homomorphism from SU(2) to SO(3) (i.e. the
action of SU(2) on the sphere by rotations) is surjective and two-to-one. Surjectivity
follows from the fact that rotations about the three coordinate axes generate all of
SO(3). This can be proven in much the same way as Lemma 5.2: any rotation can
be written as a composition of a z-rotation, followed by a y-rotation, followed by
another z-rotation. The proof of two-to-one-ness relies on the nature of projective
space:

Lemma 5.3. For any A ∈ SU(2), the set {X ∈ SU(2) : X acts the same as A on
the sphere} is precisely {A,−A}.

Proof. Note that A and X act the same on the sphere if and only if A−1X acts as
the identity. And A−1X does nothing to the sphere if and only if it does nothing to
CP1, since the two actions are equivalent by construction. Recalling the definition
of CP1 as the set of (complex) lines through the origin in C2, this simply means
that A−1X has every vector as an eigenvector, which is only possible if A−1X = kI
for some k. Rearranging this equation, we get X = kA.

So the question we must answer is: Which matrices X = kA are in SU(2)? Since
A ∈ SU(2), we know that det(A) = 1, so det(X) = det(kA) = k2. For X to be in
SU(2), k2 must be 1, implying that k = ±1, and thus X = ±A.

Note that −A is in fact unitary, in addition to having determinant 1:

−A(−A)
†
= −A(−A†) = AA† = I. □

In summary, we have shown the following:

• There is a bijection between CP1 and the unit sphere, defined by first taking
the coslope and then applying a stereographic projection.

• Under this bijection, the natural action of GL(2,C) on CP1 gives rise to an
action on the sphere.

• SU(2) matrices act on the sphere via rotations, and there are exactly two
SU(2) matrices for each rotation.

In the process of proving the above, we found explicit formulae for the SU(2)
matrices that act via rotation around the coordinate axes.

6. Closing Remarks

Now that I have proven what I set out to prove, I have a few final remarks. (The
last few require mathematical knowledge beyond that assumed in the preceding
sections to understand.)

• Real special unitary matrices are precisely those matrices that act on Rn

via rotations. (Such matrices are also known as special orthogonal matrices;
this is where the notation SO(3) comes from.) So special unitary matrices
are a generalization of rotations to the complex numbers, and in particular,
SU(2) can be thought of as the group of rotations of C2. What we have
shown then, is that there are two rotations of C2 for each rotation of R3,
and in a homomorphic way.
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• Uz(2π) is not equal to I; it is in fact equal to −I. Similarly, Ux(2π) and
Uy(2π) are both equal to −I. In other words, the SU(2) matrices that
rotate R3 by 360 degrees (thus returning it to its original position) only
rotate C2 by 180 degrees. In general, an SU(2) matrix that rotates R3 by θ
only rotates C2 by θ

2 . (The formulas for Ux(θ), Uy(θ), and Uz(θ) all contain
θ
2 but not θ.)

• In physics, where the spin of an electron is modeled as a “spinor” (a 2D
complex vector acted on by SU(2) matrices), this has the effect that, if an
electron is rotated 360 degrees, its spin vector is negated, and only returns
to its original state under a 720 degree rotation. The value of a spinor
thus depends not only only on the final result of the rotation, but also on
the path that the rotation took. (See below for a glimpse of how this is
formalized in topology.)

• SU(2) has one irreducible representation in each dimension; the homomor-
phism to SO(3) is simply the three-dimensional representation. The odd-
dimensional representations of SU(2) are also representations of SO(3), but
the even-dimensional representations are not [2, Sec. 4.7]. The irreducible
representation of SU(2) in n dimensions is known as the “spin n−1

2 repre-
sentation”. In particular, the standard (2-dimensional) representation of
SU(2) is called the spin- 12 representation, because the angles involved are
half of what they are in the 3-dimensional representation. This is why elec-
trons and other fermions (particles whose spin is modeled as a spinor) are
said to have spin 1

2 .
• It is a theorem in topology that every connected manifold X has a unique
simply connected covering manifold X̃. If X is a Lie group, then X̃ can also
be given the structure of a Lie group, such that the covering map from X̃
to X is a homomorphism. Concretely, X̃ can be constructed as the space of
paths out of the identity in X up to path homotopy, with the covering map
X̃ → X given by taking the endpoint of a path. The connection between
SO(3) and SU(2) is a special case of this general result [2, Sec. 5.8].

– Topologically, SO(3) is real projective 3-space [2, Prop. 1.17], which
has fundamental group Z/2Z.* Meanwhile, SU(2) is the 3-sphere (a
consequence of Lemma 5.1), which is simply connected. The latter is
the universal cover of the former, and the covering map is two-to-one
because Z/2Z has two elements.

– *In particular, the loop in SO(3) corresponding to a 360 degree rotation
is not homotopic to the identity, while the loop corresponding to a 720
degree rotation is. This can be demonstrated physically with a variety
of tricks, such as the plate trick and the belt trick [3].

– An informal way of stating all of this is that SU(2) is the group of
“rotations that keep track of how they got there (up to homotopy)”.
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