1 Free extensions

Given a commutative ring R, one can construct the polynomial ring R[z] by
freely extending R with an element xz. More specifically, R[x] is defined by
adding and multiplying the elements of R along with a symbol x in all possible
ways, while keeping any preexisting identities among the elements of R and
retaining the structure of a commutative ring. This process of “free extension”
can apply to other algebraic structures as well. I will write E(S) for the result
of freely extending some algebraic structure S. Here are a few examples:

e If R is a commutative ring, F(R) & R[z].

e If G is a group, E(G) = G x Z, where * denotes the free product.

e If G is an abelian group, F(G) 2 G @ Z.

e If Ris aring, F(R) & R Z[z], where * denotes the free product of rings.

This notation can lead to ambiguity, because the structure of E(S) depends
on the structure of S. Therefore, it is often a good idea to explicitly state the
type of algebraic structure one is working with. For example, if G is an abelian
group, Ep(G) 2 G Z, but Eg,p(G) = G+ Z.

2 A categorical perspective

Because the process of free extension applies to any alebraic structure, a nat-
ural question to ask is how it can be defined in categorical terms. In other
words, given a category C' and an object S € C, how can one construct the free
extension E(S) € C?

First, let’s look at the specific case of commutative rings. For any commutative
ring R, here are some of the properties of R[x]:

e There is a homomorphism cg : R — R[z] that sends each element of R to
the corresponding constant polynomial.

e There is an element xr € R[] called the identity polynomial.

e Given a commutative ring @), an element ¢ € @, and a homomorphism
f: R — @, there is a unique homomorphism [g, f] : R[z] — @ such that

[qvf](xR):qand [q,f]OCR:f.

These properties are actually sufficient to define R[x] up to isomorphism. The
only thing keeping it from being a categorical definition is the mention of ele-
ments. But it is fairly simple to translate a discussion about elements into a



discussion about morphisms. An element of a ring R is equivalent to a func-
tion 1 — U(R), where U(R) is the underlying set. Because the free functor
F : Set — CRing is left adjoint to U, a morphism 1 — U(R) is equivalent to
a morphism F(1) — R.

By replacing “element of Q7 with “morphism F(1) — Q”, and writing E(R)
instead of R|x], we arrive at the following definition:

e There is a morphism cg : R — E(R).
e There is a morphism zg : F'(1) — E(R).

e Given an object @, a morphism ¢ : F(1) — @, and a morphism f : R — @,
there is a unique morphism [q, f] : E(R) — @ such that [q, flxr = ¢ and
[q7 f]cR = f

This definition works not only in CRing, but in any category C with a free
functor F' : Set — C. In fact, there is a much more concise wording of the
definition above:

o If it exists, the free extension E(S) of an object S € C' is the coproduct
F(1)+S.

If E(S) is defined for every object S, then E can be made into a functor,
mapping each morphism f : S — T to a morphism E(f) : E(S) — E(T),
defined as E(f) = [zr,crf]. This has the property that E(f)xs = zr and
E(f)es =erf.

3 Proof: F is a monad

The latter property, namely that E(f)cs = erf, implies that there is a natural
transformation ¢ : Id — E with the obvious components.

There is also a natural transformation p : E? — E with components pug =
[r5,idp(s)]. For each f:S — T, the naturality condition for y is provable via
a long chain of equalities:



prE*(f) = [, idpr)) [z i), coer) E(f)]
[$T7 idgmy|T ey, 2T, idpcpr) E(f)]

xr,idgry E(f)]

E(f)zs, E(f)]

The next step is to show that ¢ and u satisfy the monad laws.

o Left identity

psE(cs) = [rs,idps)|[TEe(s), c(s)cs]

= [[zs,idps)|TE(s), [T5,idB(5)|cE(S)CS]
= [1g5,idg(s)Cs]
= [zs, cs]
Z

E(S)
e Right identity

Uscr(s) = [Ts,idp(s)lcr(s)
= idp(s)

e Associativity

nsE(ps) = (s, idp(s)|[rp(s): cB(s)1s]

= [[rs,idps)lrEs), [Ts,idp(s)cp(s)ps]
[.’t ZdE(S),UfS]

=

s, ,US]

psiE(s) = 1s[TE(s), idp2(s)]
= [1sTE(s), Hsidp2(s))
= [[s,idp(s)|TB(S)s HS]
= [zs, ps]

and therefore, [LSE(ILLs) = USHE(S)-



4 Algebras over E

An algebra over E is an object S along with a morphism a : E(S) — S such
that acg = idg and aFE(a) = aps.

Actually, it is only necessary to check the first condition, because if acs = idg,
then

aE(a) = alzs, csa]
= [azg,acsal
= [azg, al
= alzs,idg(s)]
= afts

For each morphism s : F(1) — S, the pairing [s,idg] : E(S) — S is an algebra
over E. In fact, every algebra over FE can be formed this way. Any morphism
a : E(S) — S is uniquely defined by the composites axg and acg (due to
the definition of the coproduct), and for a to be an algebra, acs must equal the
identity. Therefore, for every object S, there is a bijection between hom(F' (1), S)
and the set of algebras E(S) — S.

In CRing, this implies that for each element r in some commutative ring R,
there is a unique homomorphism R[z] — R that does nothing to constant
polynomials and maps z to . Applying this homomorphism to a polynomial is
called evaluating that polynomial at 7.

Given s : F(1) — S and t : F(1) — T, the corresponding algebras are [s, idg]
and [t,idr]. A morphism in the Eilenberg-Moore category from [s, idgs]| to [t,idr]
is a morphism f : S — T such that f[s,ids] = [t,idr])FE(f). This requirement
is equivalent to all of the following:

fls,ids] = [t,idr]|E(f)
[fs, [] = [t.idr][zr, c1 f]
[fs, f1 = [[t.idr]2r, [t idr]er f]
[fs. f]= [t’ f]

fs=

The last equation means that the morphisms in the Eilenberg-Moore category
CF are also morphisms in the undercategory F(1)/C, and vice versa, hence
these two categories are isomorphic.



5 More general statements

You may have noticed that the proofs in sections |3| and [4] did not rely on the
specific properties of F(1). Therefore, these theorems apply not only to E, but
to any coproduct functor. Explicitly, if C' is a category with binary coproducts,
A is an object in C, and zg : A - A+ S and ys : S — A+ S are injections,
the functor G defined by G(S) = A+ S and G(f : S — T) = [z7,yr f] has the
following properties:

e There is a natural transformation u : G?> — G with components ug =
[Ts,idg(s)]-

e (G,p,y) is a monad.

e For every S € C, there is a bijection between hom(A4,S) and the set
of algebras G(S) — S. The functions that make up this bijection are
s+ [s,idg| and a — axg.

e CY is isomorphic to A4/C.

6 Composition of elements

An important feature of polynomial rings is that one can compose their ele-
ments; given two polynomials p,q € R[z], there is a composite p o ¢ such that
p(q(r)) = (poq)(r) for all r € R. This notion of “composition” generalises to
free extensions in any category.

Let C be a category, and S € C an object with free extension E(S). As shown
in section [4] for each s : F(1) — S, there is an algebra [s,idg] : E(S) — S,
which generalises the idea of applying polynomials to constants. By analogy,
for each p : F(1) — E(S), there is a morphism [p,cg| : E(S) — E(S), which
generalises the idea of applying polynomials to polynomals (hence composing
them). I will define the composite of two morphisms p,q : F(1) — E(5) as

cmp(p, ¢) = [g, cs]p-

One can prove that cmp is associative and has xg as an identity.

e Left identity
Cmp(x57p) = [p7 CS}I’S =D
e Right identity

emp(p, xs) = [xs,cslp = idgs)p = p



e Associativity

= [g, cslemp(o, p)

= lg, csl[p, eslo

= [[g, cs]p, [g, csles]o
= [emp(p, ), cslo
cmp(o, cmp(p, q))

cmp(cmp(o, p), q)

Therfore, (hom(F (1), E(S)),cmp, zg) is a monoid in Set. And because hom(F' (1), E(S))
is isomorphic to U(E(S)), the latter is also monoid under the same operation.

7 Proof: every E(f) is a homomorphism of monoids

Morphisms of the form E(f) : E(S) — E(T) are monoid homomorphisms with
respect to composition. In other words, E(f)zs = zr and E(f)cmp(p,q) =
cmp(E(f)p, E(f)q) for all p,q : F(1) — E(S5).

The first fact is a direct consequence of the definition of £. The second fact can
be shown via a chain of equalities:
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