1 Free extensions

Given a commutative ring R, one can construct the polynomial ring $R[x]$ by freely extending R with an element x. More specifically, $R[x]$ is defined by adding and multiplying the elements of R along with a symbol x in all possible ways, while keeping any preexisting identities among the elements of R and retaining the structure of a commutative ring. This process of "free extension" can apply to other algebraic structures as well. I will write $E(S)$ for the result of freely extending some algebraic structure S. Here are a few examples:

- If R is a commutative ring, $E(R) \cong R[x]$.
- If G is a group, $E(G) \cong G * \mathbb{Z}$, where $*$ denotes the free product.
- If G is an abelian group, $E(G) \cong G \oplus \mathbb{Z}$.
- If R is a ring, $E(R) \cong R * \mathbb{Z}[x]$, where $*$ denotes the free product of rings.

This notation can lead to ambiguity, because the structure of $E(S)$ depends on the structure of S. Therefore, it is often a good idea to explicitly state the type of algebraic structure one is working with. For example, if G is an abelian group, $E_{A b}(G) \cong G \oplus \mathbb{Z}$, but $E_{G r p}(G) \cong G * \mathbb{Z}$.

2 A categorical perspective

Because the process of free extension applies to any alebraic structure, a natural question to ask is how it can be defined in categorical terms. In other words, given a category C and an object $S \in C$, how can one construct the free extension $E(S) \in C$?

First, let's look at the specific case of commutative rings. For any commutative ring R, here are some of the properties of $R[x]$:

- There is a homomorphism $c_{R}: R \rightarrow R[x]$ that sends each element of R to the corresponding constant polynomial.
- There is an element $x_{R} \in R[x]$ called the identity polynomial.
- Given a commutative ring Q, an element $q \in Q$, and a homomorphism $f: R \rightarrow Q$, there is a unique homomorphism $[q, f]: R[x] \rightarrow Q$ such that $[q, f]\left(x_{R}\right)=q$ and $[q, f] \circ c_{R}=f$.

These properties are actually sufficient to define $R[x]$ up to isomorphism. The only thing keeping it from being a categorical definition is the mention of elements. But it is fairly simple to translate a discussion about elements into a
discussion about morphisms. An element of a ring R is equivalent to a function $1 \rightarrow U(R)$, where $U(R)$ is the underlying set. Because the free functor $F:$ Set \rightarrow CRing is left adjoint to U, a morphism $1 \rightarrow U(R)$ is equivalent to a morphism $F(1) \rightarrow R$.

By replacing "element of Q " with "morphism $F(1) \rightarrow Q$ ", and writing $E(R)$ instead of $R[x]$, we arrive at the following definition:

- There is a morphism $c_{R}: R \rightarrow E(R)$.
- There is a morphism $x_{R}: F(1) \rightarrow E(R)$.
- Given an object Q, a morphism $q: F(1) \rightarrow Q$, and a morphism $f: R \rightarrow Q$, there is a unique morphism $[q, f]: E(R) \rightarrow Q$ such that $[q, f] x_{R}=q$ and $[q, f] c_{R}=f$.

This definition works not only in CRing, but in any category C with a free functor F : Set $\rightarrow C$. In fact, there is a much more concise wording of the definition above:

- If it exists, the free extension $E(S)$ of an object $S \in C$ is the coproduct $F(1)+S$.

If $E(S)$ is defined for every object S, then E can be made into a functor, mapping each morphism $f: S \rightarrow T$ to a morphism $E(f): E(S) \rightarrow E(T)$, defined as $E(f)=\left[x_{T}, c_{T} f\right]$. This has the property that $E(f) x_{S}=x_{T}$ and $E(f) c_{S}=c_{T} f$.

3 Proof: E is a monad

The latter property, namely that $E(f) c_{S}=c_{T} f$, implies that there is a natural transformation $c: I d \rightarrow E$ with the obvious components.

There is also a natural transformation $\mu: E^{2} \rightarrow E$ with components $\mu_{S}=$ $\left[x_{S}, i d_{E(S)}\right]$. For each $f: S \rightarrow T$, the naturality condition for μ is provable via a long chain of equalities:

$$
\begin{aligned}
\mu_{T} E^{2}(f) & =\left[x_{T}, i d_{E(T)}\right]\left[x_{E(T)}, c_{E(T)} E(f)\right] \\
& =\left[\left[x_{T}, i d_{E(T)}\right] x_{E(T)},\left[x_{T}, i d_{E(T)}\right] c_{E(T)} E(f)\right] \\
& =\left[x_{T}, i d_{E(T)} E(f)\right] \\
& =\left[x_{T}, E(f)\right] \\
& =\left[E(f) x_{S}, E(f)\right] \\
& =E(f)\left[x_{S}, i d_{E(S)}\right] \\
& =E(f) \mu_{S}
\end{aligned}
$$

The next step is to show that c and μ satisfy the monad laws.

- Left identity

$$
\begin{aligned}
\mu_{S} E\left(c_{S}\right) & =\left[x_{S}, i d_{E(S)}\right]\left[x_{E(S)}, c_{E(S)} c_{S}\right] \\
& =\left[\left[x_{S}, i d_{E(S)}\right] x_{E(S)},\left[x_{S}, i d_{E(S)}\right] c_{E(S)} c_{S}\right] \\
& =\left[x_{S}, i d_{E(S)} c_{S}\right] \\
& =\left[x_{S}, c_{S}\right] \\
& =i d_{E(S)}
\end{aligned}
$$

- Right identity

$$
\begin{aligned}
\mu_{S} c_{E(S)} & =\left[x_{S}, i d_{E(S)}\right] c_{E(S)} \\
& =i d_{E(S)}
\end{aligned}
$$

- Associativity

$$
\begin{aligned}
\mu_{S} E\left(\mu_{S}\right) & =\left[x_{S}, i d_{E(S)}\right]\left[x_{E(S)}, c_{E(S)} \mu_{S}\right] \\
& =\left[\left[x_{S}, i d_{E(S)}\right] x_{E(S)},\left[x_{S}, i d_{E(S)}\right] c_{E(S)} \mu_{S}\right] \\
& =\left[x_{S}, i d_{E(S)} \mu_{S}\right] \\
& =\left[x_{S}, \mu_{S}\right] \\
\mu_{S} \mu_{E(S)} & =\mu_{S}\left[x_{E(S)}, i d_{E^{2}(S)}\right] \\
& =\left[\mu_{S} x_{E(S)}, \mu_{S} i d_{E^{2}(S)}\right] \\
& =\left[\left[x_{S}, i d_{E(S)}\right] x_{E(S)}, \mu_{S}\right] \\
& =\left[x_{S}, \mu_{S}\right]
\end{aligned}
$$

and therefore, $\mu_{S} E\left(\mu_{S}\right)=\mu_{S} \mu_{E(S)}$.

4 Algebras over E

An algebra over E is an object S along with a morphism $a: E(S) \rightarrow S$ such that $a c_{S}=i d_{S}$ and $a E(a)=a \mu_{S}$.

Actually, it is only necessary to check the first condition, because if $a c_{S}=i d_{S}$, then

$$
\begin{aligned}
a E(a) & =a\left[x_{S}, c_{S} a\right] \\
& =\left[a x_{S}, a c_{S} a\right] \\
& =\left[a x_{S}, a\right] \\
& =a\left[x_{S}, i d_{E(S)}\right] \\
& =a \mu_{S}
\end{aligned}
$$

For each morphism $s: F(1) \rightarrow S$, the pairing $\left[s, i d_{S}\right]: E(S) \rightarrow S$ is an algebra over E. In fact, every algebra over E can be formed this way. Any morphism $a: E(S) \rightarrow S$ is uniquely defined by the composites $a x_{S}$ and $a c_{S}$ (due to the definition of the coproduct), and for a to be an algebra, $a c_{S}$ must equal the identity. Therefore, for every object S, there is a bijection between hom $(F(1), S)$ and the set of algebras $E(S) \rightarrow S$.

In CRing, this implies that for each element r in some commutative ring R, there is a unique homomorphism $R[x] \rightarrow R$ that does nothing to constant polynomials and maps x to r. Applying this homomorphism to a polynomial is called evaluating that polynomial at r.

Given $s: F(1) \rightarrow S$ and $t: F(1) \rightarrow T$, the corresponding algebras are $\left[s, i d_{S}\right]$ and $\left[t, i d_{T}\right]$. A morphism in the Eilenberg-Moore category from $\left[s, i d_{S}\right]$ to $\left[t, i d_{T}\right]$ is a morphism $f: S \rightarrow T$ such that $f\left[s, i d_{S}\right]=\left[t, i d_{T}\right] E(f)$. This requirement is equivalent to all of the following:

$$
\begin{aligned}
f\left[s, i d_{S}\right] & =\left[t, i d_{T}\right] E(f) \\
{[f s, f] } & =\left[t, i d_{T}\right]\left[x_{T}, c_{T} f\right] \\
{[f s, f] } & =\left[\left[t, i d_{T}\right] x_{T},\left[t, i d_{T}\right] c_{T} f\right] \\
{[f s, f] } & =[t, f] \\
f s & =t
\end{aligned}
$$

The last equation means that the morphisms in the Eilenberg-Moore category C^{E} are also morphisms in the undercategory $F(1) / C$, and vice versa, hence these two categories are isomorphic.

5 More general statements

You may have noticed that the proofs in sections 3 and 4 did not rely on the specific properties of $F(1)$. Therefore, these theorems apply not only to E, but to any coproduct functor. Explicitly, if C is a category with binary coproducts, A is an object in C, and $x_{S}: A \rightarrow A+S$ and $y_{S}: S \rightarrow A+S$ are injections, the functor G defined by $G(S)=A+S$ and $G(f: S \rightarrow T)=\left[x_{T}, y_{T} f\right]$ has the following properties:

- There is a natural transformation $\mu: G^{2} \rightarrow G$ with components $\mu_{S}=$ $\left[x_{S}, i d_{G(S)}\right]$.
- (G, μ, y) is a monad.
- For every $S \in C$, there is a bijection between $\operatorname{hom}(A, S)$ and the set of algebras $G(S) \rightarrow S$. The functions that make up this bijection are $s \mapsto\left[s, i d_{S}\right]$ and $a \mapsto a x_{S}$.
- C^{G} is isomorphic to A / C.

6 Composition of elements

An important feature of polynomial rings is that one can compose their elements; given two polynomials $p, q \in R[x]$, there is a composite $p \circ q$ such that $p(q(r))=(p \circ q)(r)$ for all $r \in R$. This notion of "composition" generalises to free extensions in any category.

Let C be a category, and $S \in C$ an object with free extension $E(S)$. As shown in section 4, for each $s: F(1) \rightarrow S$, there is an algebra $\left[s, i d_{S}\right]: E(S) \rightarrow S$, which generalises the idea of applying polynomials to constants. By analogy, for each $p: F(1) \rightarrow E(S)$, there is a morphism $\left[p, c_{S}\right]: E(S) \rightarrow E(S)$, which generalises the idea of applying polynomials to polynomals (hence composing them). I will define the composite of two morphisms $p, q: F(1) \rightarrow E(S)$ as $\operatorname{cmp}(p, q)=\left[q, c_{S}\right] p$.

One can prove that cmp is associative and has x_{S} as an identity.

- Left identity

$$
\operatorname{cmp}\left(x_{S}, p\right)=\left[p, c_{S}\right] x_{S}=p
$$

- Right identity

$$
\operatorname{cmp}\left(p, x_{S}\right)=\left[x_{S}, c_{S}\right] p=i d_{E(S)} p=p
$$

- Associativity

$$
\begin{aligned}
\operatorname{cmp}(\operatorname{cmp}(o, p), q) & =\left[q, c_{S}\right] \operatorname{cmp}(o, p) \\
& =\left[q, c_{S}\right]\left[p, c_{S}\right] o \\
& =\left[\left[q, c_{S}\right] p,\left[q, c_{S}\right] c_{S}\right] o \\
& =\left[\operatorname{cmp}(p, q), c_{S}\right] o \\
& =\operatorname{cmp}(o, \operatorname{cmp}(p, q))
\end{aligned}
$$

Therfore, $\left(\operatorname{hom}(F(1), E(S)), \mathrm{cmp}, x_{S}\right)$ is a monoid in Set. And because hom $(F(1), E(S))$ is isomorphic to $U(E(S)$), the latter is also monoid under the same operation.

7 Proof: every $E(f)$ is a homomorphism of monoids

Morphisms of the form $E(f): E(S) \rightarrow E(T)$ are monoid homomorphisms with respect to composition. In other words, $E(f) x_{S}=x_{T}$ and $E(f) \operatorname{cmp}(p, q)=$ $\operatorname{cmp}(E(f) p, E(f) q)$ for all $p, q: F(1) \rightarrow E(S)$.

The first fact is a direct consequence of the definition of E. The second fact can be shown via a chain of equalities:

$$
\begin{aligned}
\operatorname{cmp}(E(f) p, E(f) q) & =\left[E(f) q, c_{T}\right] E(f) p \\
& =\left[E(f) q, c_{T}\right]\left[x_{T}, c_{T} f\right] p \\
& =\left[\left[E(f) q, c_{T}\right] x_{T},\left[E(f) q, c_{T}\right] c_{T} f\right] p \\
& =\left[E(f) q, c_{T} f\right] p \\
& =\left[E(f) q, E(f) c_{S}\right] p \\
& =E(f)\left[q, c_{S}\right] p \\
& =E(f) \operatorname{cmp}(p, q)
\end{aligned}
$$

