
1 Free extensions

Given a commutative ring R, one can construct the polynomial ring R[x] by
freely extending R with an element x. More specifically, R[x] is defined by
adding and multiplying the elements of R along with a symbol x in all possible
ways, while keeping any preexisting identities among the elements of R and
retaining the structure of a commutative ring. This process of “free extension”
can apply to other algebraic structures as well. I will write E(S) for the result
of freely extending some algebraic structure S. Here are a few examples:

• If R is a commutative ring, E(R) ∼= R[x].

• If G is a group, E(G) ∼= G ∗ Z, where ∗ denotes the free product.

• If G is an abelian group, E(G) ∼= G⊕ Z.

• If R is a ring, E(R) ∼= R ∗Z[x], where ∗ denotes the free product of rings.

This notation can lead to ambiguity, because the structure of E(S) depends
on the structure of S. Therefore, it is often a good idea to explicitly state the
type of algebraic structure one is working with. For example, if G is an abelian
group, EAb(G) ∼= G⊕ Z, but EGrp(G) ∼= G ∗ Z.

2 A categorical perspective

Because the process of free extension applies to any alebraic structure, a nat-
ural question to ask is how it can be defined in categorical terms. In other
words, given a category C and an object S ∈ C, how can one construct the free
extension E(S) ∈ C?

First, let’s look at the specific case of commutative rings. For any commutative
ring R, here are some of the properties of R[x]:

• There is a homomorphism cR : R→ R[x] that sends each element of R to
the corresponding constant polynomial.

• There is an element xR ∈ R[x] called the identity polynomial.

• Given a commutative ring Q, an element q ∈ Q, and a homomorphism
f : R → Q, there is a unique homomorphism [q, f ] : R[x] → Q such that
[q, f ](xR) = q and [q, f ] ◦ cR = f .

These properties are actually sufficient to define R[x] up to isomorphism. The
only thing keeping it from being a categorical definition is the mention of ele-
ments. But it is fairly simple to translate a discussion about elements into a
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discussion about morphisms. An element of a ring R is equivalent to a func-
tion 1 → U(R), where U(R) is the underlying set. Because the free functor
F : Set → CRing is left adjoint to U , a morphism 1 → U(R) is equivalent to
a morphism F (1)→ R.

By replacing “element of Q” with “morphism F (1) → Q”, and writing E(R)
instead of R[x], we arrive at the following definition:

• There is a morphism cR : R→ E(R).

• There is a morphism xR : F (1)→ E(R).

• Given an object Q, a morphism q : F (1)→ Q, and a morphism f : R→ Q,
there is a unique morphism [q, f ] : E(R) → Q such that [q, f ]xR = q and
[q, f ]cR = f .

This definition works not only in CRing, but in any category C with a free
functor F : Set → C. In fact, there is a much more concise wording of the
definition above:

• If it exists, the free extension E(S) of an object S ∈ C is the coproduct
F (1) + S.

If E(S) is defined for every object S, then E can be made into a functor,
mapping each morphism f : S → T to a morphism E(f) : E(S) → E(T ),
defined as E(f) = [xT , cT f ]. This has the property that E(f)xS = xT and
E(f)cS = cT f .

3 Proof: E is a monad

The latter property, namely that E(f)cS = cT f , implies that there is a natural
transformation c : Id→ E with the obvious components.

There is also a natural transformation µ : E2 → E with components µS =
[xS , idE(S)]. For each f : S → T , the naturality condition for µ is provable via
a long chain of equalities:
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µTE
2(f) = [xT , idE(T )][xE(T ), cE(T )E(f)]

= [[xT , idE(T )]xE(T ), [xT , idE(T )]cE(T )E(f)]

= [xT , idE(T )E(f)]

= [xT , E(f)]

= [E(f)xS , E(f)]

= E(f)[xS , idE(S)]

= E(f)µS

The next step is to show that c and µ satisfy the monad laws.

• Left identity

µSE(cS) = [xS , idE(S)][xE(S), cE(S)cS ]

= [[xS , idE(S)]xE(S), [xS , idE(S)]cE(S)cS ]

= [xS , idE(S)cS ]

= [xS , cS ]

= idE(S)

• Right identity

µScE(S) = [xS , idE(S)]cE(S)

= idE(S)

• Associativity

µSE(µS) = [xS , idE(S)][xE(S), cE(S)µS ]

= [[xS , idE(S)]xE(S), [xS , idE(S)]cE(S)µS ]

= [xS , idE(S)µS ]

= [xS , µS ]

µSµE(S) = µS [xE(S), idE2(S)]

= [µSxE(S), µSidE2(S)]

= [[xS , idE(S)]xE(S), µS ]

= [xS , µS ]

and therefore, µSE(µS) = µSµE(S).
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4 Algebras over E

An algebra over E is an object S along with a morphism a : E(S) → S such
that acS = idS and aE(a) = aµS .

Actually, it is only necessary to check the first condition, because if acS = idS ,
then

aE(a) = a[xS , cSa]

= [axS , acSa]

= [axS , a]

= a[xS , idE(S)]

= aµS

For each morphism s : F (1) → S, the pairing [s, idS ] : E(S) → S is an algebra
over E. In fact, every algebra over E can be formed this way. Any morphism
a : E(S) → S is uniquely defined by the composites axS and acS (due to
the definition of the coproduct), and for a to be an algebra, acS must equal the
identity. Therefore, for every object S, there is a bijection between hom(F (1), S)
and the set of algebras E(S)→ S.

In CRing, this implies that for each element r in some commutative ring R,
there is a unique homomorphism R[x] → R that does nothing to constant
polynomials and maps x to r. Applying this homomorphism to a polynomial is
called evaluating that polynomial at r.

Given s : F (1) → S and t : F (1) → T , the corresponding algebras are [s, idS ]
and [t, idT ]. A morphism in the Eilenberg-Moore category from [s, idS ] to [t, idT ]
is a morphism f : S → T such that f [s, idS ] = [t, idT ]E(f). This requirement
is equivalent to all of the following:

f [s, idS ] = [t, idT ]E(f)

[fs, f ] = [t, idT ][xT , cT f ]

[fs, f ] = [[t, idT ]xT , [t, idT ]cT f ]

[fs, f ] = [t, f ]

fs = t

The last equation means that the morphisms in the Eilenberg-Moore category
CE are also morphisms in the undercategory F (1)/C, and vice versa, hence
these two categories are isomorphic.
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5 More general statements

You may have noticed that the proofs in sections 3 and 4 did not rely on the
specific properties of F (1). Therefore, these theorems apply not only to E, but
to any coproduct functor. Explicitly, if C is a category with binary coproducts,
A is an object in C, and xS : A → A + S and yS : S → A + S are injections,
the functor G defined by G(S) = A+ S and G(f : S → T ) = [xT , yT f ] has the
following properties:

• There is a natural transformation µ : G2 → G with components µS =
[xS , idG(S)].

• (G,µ, y) is a monad.

• For every S ∈ C, there is a bijection between hom(A,S) and the set
of algebras G(S) → S. The functions that make up this bijection are
s 7→ [s, idS ] and a 7→ axS .

• CG is isomorphic to A/C.

6 Composition of elements

An important feature of polynomial rings is that one can compose their ele-
ments; given two polynomials p, q ∈ R[x], there is a composite p ◦ q such that
p(q(r)) = (p ◦ q)(r) for all r ∈ R. This notion of “composition” generalises to
free extensions in any category.

Let C be a category, and S ∈ C an object with free extension E(S). As shown
in section 4, for each s : F (1) → S, there is an algebra [s, idS ] : E(S) → S,
which generalises the idea of applying polynomials to constants. By analogy,
for each p : F (1) → E(S), there is a morphism [p, cS ] : E(S) → E(S), which
generalises the idea of applying polynomials to polynomals (hence composing
them). I will define the composite of two morphisms p, q : F (1) → E(S) as
cmp(p, q) = [q, cS ]p.

One can prove that cmp is associative and has xS as an identity.

• Left identity

cmp(xS , p) = [p, cS ]xS = p

• Right identity

cmp(p, xS) = [xS , cS ]p = idE(S)p = p
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• Associativity

cmp(cmp(o, p), q) = [q, cS ]cmp(o, p)

= [q, cS ][p, cS ]o

= [[q, cS ]p, [q, cS ]cS ]o

= [cmp(p, q), cS ]o

= cmp(o, cmp(p, q))

Therfore, (hom(F (1), E(S)), cmp, xS) is a monoid in Set. And because hom(F (1), E(S))
is isomorphic to U(E(S)), the latter is also monoid under the same operation.

7 Proof: every E(f) is a homomorphism of monoids

Morphisms of the form E(f) : E(S)→ E(T ) are monoid homomorphisms with
respect to composition. In other words, E(f)xS = xT and E(f)cmp(p, q) =
cmp(E(f)p,E(f)q) for all p, q : F (1)→ E(S).

The first fact is a direct consequence of the definition of E. The second fact can
be shown via a chain of equalities:

cmp(E(f)p,E(f)q) = [E(f)q, cT ]E(f)p

= [E(f)q, cT ][xT , cT f ]p

= [[E(f)q, cT ]xT , [E(f)q, cT ]cT f ]p

= [E(f)q, cT f ]p

= [E(f)q, E(f)cS ]p

= E(f)[q, cS ]p

= E(f)cmp(p, q)
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