1 Morphism preservation

Suppose we have the following:

e a category C
e an object X € C
e a functor F': C/X — C

e a morphism s: F(X,idx) = X

I will say that an object (Y,k) € C/X preserves s if there is a morphism
t: F(Y,k) — Y such that kt = sFk.

2 Proof: if two objects preserve a morphism, so does their
product

Assume there are two objects (Y1, k1), (Y2, ko) € C/X which both preserve s.
In other words, the following diagrams commute for some ¢, and t5:
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Let (Y3, k3) be the product (Y1,k1) x (Y3, ka), or equivalently, the pullback of
k‘l and kig in C.
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Note that k1t1 Fm; = sFkiFmq = sFkaFme = katoF'ms. This means that the
object F'(Ys, k3) along with the morphisms ¢, F'm; and to F'my forms a cone over
k1 and ko. Due to the defining property of the pullback, there must be a unique
morphism t3 : F(Y3, k3) — Y3 such that the following diagram commutes:
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We can now show that (Y3, ks) preserves s: ksts = kymats = kitiFmq =
sFkiFmy = sFks.

3 Properties of relations on objects

One application of the preceding theorem concerns relations on objects. A
relation on a set A can be defined as a subset R C A2. More generally, in
any category C, a relation on an object A is another object R along with a
monomorphism k : R < A% (where A? denotes the product of A with itself).
Equivalently, a relation on an object A is an object (R, k) in the overcategory
C/A? where k is monic.

Using this definition, we can define some properties that relations might have.

° k) is reflexive if there is a morphism ¢ : A — R such that kt =
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p)k. Here, p and ¢ are the projections from A2 to A, and therefore
p): A2 — A can be thought of as a function that switches the items
in a pair.
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e (R, k) is symmetric if there is a morphism ¢ : R — R such that kt =
(.
{9,

o (R, k) is transitive if there is a morphism ¢ : T — R such that kt =
(pkx, gky), where T, x, and y are defined by the pullback diagram
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We can define the intersection of two relations (R, k1) and (R, k2) on the same
object A as the pullback of k1 and k2.
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Because pullbacks preserve monomorphisms, all of the morphisms in the dia-
gram above are monic, and (Rs, k3) is a relation on A.

4 Proof: the intersection of two relations inherits their
properties

An interesting question to ask is whether the properties of R; and Ry are in-
herited by R3. To answer this question, all we need to do is define some functor
F : 0/A%? — C and some morphism s : F(A? id2) — A? such that relations
with a certain property (e.g. reflexivity) are exactly those which preserve s. By
the theorem I proved in section [2 it is then guaranteed that if two relations
have that property, their intersection will also have that property.

o Let F be the constant functor at A, and s : A — A? the diagonal morphism
(ida,id ). Then a relation is reflexive if and only if it preserves s.

e Let F be the forgetful functor from C'/A% to C, and s : A2 — A? the “swap
function” (g, p). Then a relation is symmetric if and only if it preserves s.

e The case for transitive relations is more complicated. We define F' to be a

functor that assigns each object (R, k) € C'/A? to the pullback of ¢k and
pk.
We also need to define how F maps morphisms. Suppose there is a
morphism from some object (Ry, k1) € C/A? to another object (Ra, ko).
By definition, this corresponds to a morphism f : R; — Ry such that
kgf = kl. Let T1,Y1 - F(Rl,kl) — Rl and xT2,Y2 : F(Rg,kg) — RQ be
pullback projections.

A A
R, R Ry Ry
F(Ry, k1) F(Ry, ko)

Note that gks fo1 = k121 = pk1y1 = pkafyi. This means that F(Ry, kq),
along with the morphisms fx; and fy;, forms a cone over gk, and pks.



Due to the defining property of the pullback, there must be a unique
morphism Ff : F(Ry,k1) — F(Rz,k2) such that the following diagram

commutes:
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If we apply the same process to a morphism g : (Ra, k2) — (Rs, k3), where
(R3, k3) is any object, we will find that F'g is the unique morphism such
that z3Fg = gze and ysFg = gys. In addition, F(gf) is the unique
morphism such that z3F(gf) = gfx1 and ysF(gf) = gfy1.

Note that x3FgF f = gxoF f = gfx1, and similarly, ys FgF f = gyo F'f =
gfy1. But I already said that F'(gf) is the unique morphism with those
properties. Therefore, FgF f must equal F(gf), proving that F' is a func-
tor.

Define s : FI(A?,id2) — A? as the morphism (pz, qy), where z and y are
pullback projections and gx = py. Then a relation is transitive if and only
if it preserves s.

To see how this is equivalent to the definition of transitivity stated ear-
lier, assume there is some object (R, k) in C/A? with projections 'y’ :
F(R,k) — R. Then Fk is the unique morphism such that ©Fk = kz' and
yFk = ky'. If (R, k) preserves s, then there exists t : F(R, k) — R satis-
fying kt = sFk. But s = (pz, qy), so kt = (pxFk,qyFk) = (pka', qky’).

In summary, several properties of relations, including reflexivity, symmetry, and
transitivity, can be stated in terms of “preserving” some morphism. As a con-
sequence, if two relations are both reflexive, their intersection is also reflexive,
and likewise for symmetry and transitivity.
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