Regular Commutative Semigroups

Owen Bechtel

September 24, 2023

1 Introduction

Regular commutative semigroups are a generalization of abelian groups. They are defined by replacing the "identity" and "inverse" axioms of an abelian group with the weaker requirement that every element have a "pseudoinverse." In a regular commutative semigroup (or RCS), there need not be a "global" zero element 0 such that $0+x=x$ for all x; instead, each element x has its own "local" zero, denoted 0_{x}.

I came up with this generalization of an abelian group independently, and studied it for several days before learning that the axiom I was researching already had a name: regularity. According to Wikipedia, "regular semigroups are one of the most-studied classes of semigroups." However, to my knowledge, little attention has been paid to the commutative case. Nearly all of the theorems in this paper are my own; the first three (propositions 2.1, 2.2, and 2.3) are the only exceptions.

In section 2 (Regular Commutative Semigroups), I give the precise definition of an RCS, and prove several results about them. In section 3 (Classification of RCSs), I describe a universal way of constructing an RCS out of a semilattice and a diagram of abelian groups. In section 4 (Regular Semirings), I define the notion of a "regular semiring," and prove several theorems about these structures and their connection to RCSs. Finally, in section 5 (Semimodules and Semialgebras), I characterize RCSs as semimodules over the integers.

2 Regular Commutative Semigroups

Let A be a semigroup, and a, b elements of A. If $a+b+a=a$, then b is said to be a pseudoinverse of a. If, in addition, $b+a+b=b$, then b is said to be an inverse of a. (Note that, in a monoid, this is weaker than the requirement that $a+b$ equal the identity.)

A semigroup A is said to be regular if every element has a pseudoinverse, i.e. for all $a \in A$ there is some $b \in A$ such that $a+b+a=a$. A regular commutative semigroup (RCS) is a commutative semigroup which is regular.

Proposition 2.1. Every element of a regular semigroup has at least one inverse.
Proof. Let A be a regular semigroup, and a an element of A. By regularity, there exists $b \in A$ with $a+b+a=a$. Let $c=b+a+b$. It is easy to check that $a+c+a=a$ and $c+a+c=c$. In other words, c is an inverse of a.

Proposition 2.2. Every element of a commutative semigroup has at most one inverse.

Proof. Let A be a commutative semigroup, and a an element of A. Suppose b and c are inverses of a; we have $a+b+a=a, b+a+b=b, a+c+a=a$, and $c+a+c=c$. One can show, via a chain of equalities, that b and c are equal:

$$
\begin{aligned}
b & =b+a+b \\
& =b+a+c+a+b \\
& =b+a+c+a+c+a+b \\
& =c+a+b+a+b+a+c \\
& =c+a+b+a+c \\
& =c+a+c \\
& =c .
\end{aligned}
$$

By combining propositions 2.1 and 2.2 , we get the following:
Proposition 2.3. Every element of an RCS has exactly one inverse.
If x is an element of an RCS, I will denote its unique inverse as x^{*}, and define 0_{x} to be the sum $x+x^{*}$.

Proposition 2.4. The following equations hold for any element x of an $R C S$:

1. $0_{x}+x=x$
2. $0_{x}+x^{*}=x^{*}$
3. $0_{x}+0_{x}=0_{x}$
4. $0_{0_{x}}=0_{x}$
5. $\left(0_{x}\right)^{*}=0_{x}$
6. $\left(x^{*}\right)^{*}=x$
7. $0_{x^{*}}=0_{x}$

Proof. The first three statements are easy: simply replace 0_{x} with $x+x^{*}$ and use the fact that x and x^{*} are inverses. I will prove the rest of the statements in turn.
4. $0_{0_{x}}=0_{x}+\left(0_{x}\right)^{*}=0_{x}+0_{x}+\left(0_{x}\right)^{*}=0_{x}$.
5. 0_{x} is an inverse of 0_{x}, since $0_{x}+0_{x}+0_{x}=0_{x}$ by statement 3 . Inverses are unique, so $\left(0_{x}\right)^{*}=0_{x}$.
6. x is an inverse of x^{*}, since the "inverse" relation is symmetric. Inverses are unique, so $\left(x^{*}\right)^{*}=x$.
7. This follows from statement 6: $0_{x^{*}}=x^{*}+\left(x^{*}\right)^{*}=x^{*}+x=0_{x}$.

The following theorem characterizes the idempotent elements of an RCS. (An element x is called idempotent if $x+x=x$.)

Proposition 2.5. For any element a of an $R C S$, the following are equivalent:

1. a is idempotent,
2. $0_{a}=a$,
3. $a=0_{x}$ for some x.

Proof. Property 2 clearly implies property 3: simply take $x=a$. Property 3 implies property 1 because $0_{x}+0_{x}=0_{x}$. All that remains is to show that property 1 implies property 2 .

Suppose a is idempotent. Then a is its own inverse, because $a+a+a=$ $a+a=a$. We then have $0_{a}=a+a^{*}=a+a=a$.

Proposition 2.6. The following equations hold for any elements x, y of an RCS:

1. $(x+y)^{*}=x^{*}+y^{*}$
2. $0_{x+y}=0_{x}+0_{y}$

Proof. It is easy to check that $x^{*}+y^{*}$ is an inverse of $x+y$. Since inverses are unique, this implies $(x+y)^{*}=x^{*}+y^{*}$.

The second equation is a consequence of the first: we have $0_{x+y}=x+y+$ $(x+y)^{*}=x+y+x^{*}+y^{*}=0_{x}+0_{y}$.

I will now introduce some notation. If A is an RCS, I will define $\zeta: A \rightarrow A$ and $Z_{A} \subseteq A$ as follows:

- $\zeta(x)=0_{x}$
- $Z_{A}=\{x \in A \mid x+x=x\}$

By proposition 2.6, ζ is an endomorphism of A, and by proposition 2.5, the image of ζ is Z_{A}. Moreover, it was shown in proposition 2.4 that $0_{0_{x}}=x$ for all x, which means that ζ is an idempotent function in the sense that $\zeta \circ \zeta=\zeta$. In summary, one can think of ζ as projecting the whole of A onto Z_{A} (the subset of idempotent elements) in a way that preserves addition.

For any $a \in Z_{A}$, I will define $G(a) \subseteq A$ to be the fiber of ζ at a. In other words, $G(a)=\left\{x \in A \mid 0_{x}=a\right\}$.

Proposition 2.7. For any $R C S A$ and for all $a \in Z_{A}, G(a)$ is an abelian group with a as its identity.

Proof.

- $G(a)$ is closed under addition: If $0_{x}=0_{y}=a$ then $0_{x+y}=0_{x}+0_{y}=$ $a+a=a$.
- $G(a)$ has a as an identity: If $0_{x}=a$ then $a+x=x$.
- $G(a)$ has inverses (in the group sense): If $0_{x}=a$ then $0_{x^{*}}=a$ (since $0_{x^{*}}=0_{x}$), and $x+x^{*}=a$.

Remark. The subsets $G(a)$ are pairwise disjoint, and their union is the whole of A. (This is true for the fibers of any function.) Thus $\left\{G(a) \mid a \in Z_{A}\right\}$ is a partition of A into abelian groups. The following propositions describe the relationships between these groups:

Proposition 2.8. For any $R C S A$ and for all $a, b \in Z_{A}$, the function $\phi_{b}: A \rightarrow$ A defined by $\phi_{b}(x)=x+b$ is a group homomorphism from $G(a)$ to $G(a+b)$.

Proof. First, it is necessary to show that ϕ_{b} maps $G(a)$ into $G(a+b)$. If $x \in G(a)$ then $0_{\phi_{b}(x)}=0_{x+b}=0_{x}+0_{b}=a+b$. Thus $\phi_{b}(x) \in G(a+b)$.

All that remains is to show that ϕ_{b} preserves addition. We have $\phi_{b}(x+y)=$ $x+y+b$ and $\phi_{b}(x)+\phi_{b}(y)=x+b+y+b=x+y+b$ (since b is idempotent).

Proposition 2.9. For any RCS A and for all $a, b, c \in Z_{A}$ such that $a+b=a+c$, the functions $\phi_{b}(x)=x+b$ and $\phi_{c}(x)=x+c$ are equal on elements of $G(a)$.

Proof. If $x \in G(a)$, then $x=x+a$. We have $\phi_{b}(x)=x+b=x+a+b=$ $x+a+c=x+c=\phi_{c}(x)$.

3 Classification of RCSs

Recall that a semilattice is a commutative semigroup in which every element is idempotent. Every semilattice Z has a canonical partial order on its elements: if a and b are elements of Z, one says $a \leq b$ if there exists $x \in Z$ such that $a+x=b$. The set of idempotent elements of any commutative semigroup forms a semilattice.

The theorem below defines a very general way of constructing an RCS out of a semilattice and a family of abelian groups:

Theorem 3.1. Let Z be a semilattice, and $\left\{G_{a}\right\}_{a \in Z} a \quad Z$-indexed family of abelian groups. Let $\left\{\phi_{a, b}: G_{a} \rightarrow G_{b}\right\}_{a \leq b}$ be a family of group homomorphisms indexed by pairs $a, b \in Z$ with $a \leq b$, such that $\phi_{a, a}=$ id for all a, and $\phi_{b, c} \circ$ $\phi_{a, b}=\phi_{a, c}$ for all $a \leq b \leq c$. Then the disjoint union $A=\coprod_{a \in Z} G_{a}$ is an RCS with $x+y$ defined as $\phi_{a, a+b}(x)+\phi_{b, a+b}(y)$ for $x \in G_{a}$ and $y \in G_{b}$.
Remark. The required data could be defined more concisely as a semilattice Z along with a functor from (Z, \leq) to the category of abelian groups.

Proof. I will check commutativity, associativity, and regularity in turn.

- Commutativity: Let $x \in G_{a}$ and $y \in G_{b}$. We have $x+y=\phi_{a, a+b}(x)+$ $\phi_{b, a+b}(y)$, and $y+x=\phi_{b, b+a}(y)+\phi_{a, b+a}(x)$. These are equal, since addition in Z and addition in G_{a+b} are both commutative.
- Associativity: Let $x \in G_{a}, y \in G_{b}$, and $z \in G_{c}$. We have $x+(y+$ $z)=\phi_{a, a+b+c}(x)+\phi_{b+c, a+b+c}\left(\phi_{b, b+c}(y)+\phi_{c, b+c}(z)\right)=\phi_{a, a+b+c}(x)+$ $\phi_{b, a+b+c}(y)+\phi_{c, a+b+c}(z)$. (This uses the fact that the $\phi_{i, j}$ are homomorphisms, as well as the functorial requirement placed on them.) Evaluating $(x+y)+z$ gives the same result.
- Regularity: Let $x \in G_{a}$ and write $-x$ for the inverse of x in G_{a}. We have $x+(-x)+x=\phi_{a, a+a+a}(x)+\phi_{a, a+a+a}(-x)+\phi_{a, a+a+a}(x)$, where addition on the left side is in A and addition on the right side is in G_{a+a+a}. But $a+a+a=a$, so $\phi_{a, a+a+a}$ is the identity map, and the right side becomes $x+(-x)+x$, which is just x.

Below are two examples of this rather useful construction.
Example 3.2. Let Z be the semilattice $\{0, \infty\}$, where + and \leq are as you would expect. Define G_{0} to be the group $(\mathbb{Z},+)$ of integers under addition, and G_{∞} to be the trivial group whose element I will denote ∞. There is only one way to define the $\phi_{i, j}$: we have $\phi_{0,0}=\mathrm{id}, \phi_{\infty, \infty}=\mathrm{id}$, and $\phi_{0, \infty}(n)=\infty$ for all n.

The resulting RCS is the set $\mathbb{Z} \cup \infty$ where addition is defined such that $\infty+x=\infty$ for all x. The inverse of n is $-n$ for $n \in \mathbb{Z}$, and the inverse of ∞ is ∞.

Example 3.3. Let X be a topological space. Let Z be the semilattice of open subsets of X under the operation of intersection. For open sets $U, V \in Z$, we have $U \leq V$ iff $U \supseteq V$. For $U \in Z$, let G_{U} be the additive group of continuous functions from U to \mathbb{R}, and for $U, V \in Z$ such that $U \supseteq V$, let $\phi_{U, V}: G_{U} \rightarrow G_{V}$ be the homomorphism that restricts a function defined on U to one defined on V.

The resulting RCS is isomorphic to the set of pairs (U, f) where U is an open subset of X and f is a continuous function from U to \mathbb{R}, and where the sum $(U, f)+(V, g)$ is equal to $(U \cap V, f+g)$.

For example, if $X=\mathbb{R}$ and U is the set of positive real numbers, we would have $\left(U, x \mapsto \frac{1}{x}\right)+(\mathbb{R}, x \mapsto 2)=\left(U, x \mapsto \frac{1}{x}+2\right)$.

Theorem 3.4. Any RCS can be constructed by the method in theorem 3.1.
Proof. Let A be an RCS. Let Z be the semilattice of idempotent elements of A, and for each $a \in Z$, let G_{a} be the set $\left\{x \in A \mid 0_{x}=a\right\}$. By proposition 2.7, each G_{a} is an abelian group. For $a, b \in Z$ such that $a \leq b$, define $\phi_{a, b}: G_{a} \rightarrow G_{b}$ as $\phi_{a, b}(x)=x+c$ where c is an element of Z such that $a+c=b$. (By proposition 2.9. this is well defined; it does not matter which c we choose.) $\phi_{a, b}$ is a group
homomorphism by proposition 2.8 . It is easy to check that $\phi_{a, a}$ is the identity for all $a \in Z$, and that $\phi_{b, c} \circ \phi_{a, b}=\phi_{a, c}$ for all $a \leq b \leq c$.

Applying the construction in theorem 3.1, we get an RCS whose underlying set is the same as that of A, and whose addition law is $x+y=\phi_{a, a+b}(x)+$ $\phi_{b, a+b}(y)$, where $x \in G_{a}, y \in G_{b}$, and the addition on the right is in A. This simplifies to $x+b+y+a=x+a+y+b$, which is just $x+y$.

4 Regular Semirings

For the purposes of this paper, I will define a semiring to be a set S equipped with two binary operations + and \cdot such that:

1. $(S,+)$ is a commutative semigroup.
2. (S, \cdot) is a monoid.
3. + and \cdot together satisfy the right and left distributive laws.

Note that a semiring, under this definition, must have a multiplicative identity, but need not have an additive identity. For example, the positive integers (under the usual operations) form a semiring.

A regular semiring is a semiring in which the multiplicative identity has an additive pseudoinverse. In other words, a semiring S is regular iff there exists $a \in S$ such that $1+a+1=1$ (where 1 is the multiplicative identity in S).

Proposition 4.1. If S is a regular semiring, its additive semigroup $(S,+)$ is an $R C S$.

Proof. If S is regular, there exists $a \in S$ with $1+a+1=1$. Let x be an element of S. Multiplying the preceding equation by x and distributing, we find that $x+a x+x=x$. So x has a pseudoinverse.

Proposition 4.2. For every element x of a regular semiring, $1^{*} x=x 1^{*}=x^{*}$ and $0_{1} x=x 0_{1}=0_{x}$.

Proof. 1* denotes the inverse of 1 , so $1+1^{*}+1=1$ and $1^{*}+1+1^{*}=1^{*}$. Right-multiplying these equations by x, one finds that $x+1^{*} x+x=x$ and $1^{*} x+x+1^{*} x=1^{*} x$. So $1^{*} x$ is the inverse of x, i.e. $1^{*} x=x^{*}$. Likewise, by left-multiplying the original equations by x, one finds that $x 1^{*}=x^{*}$.

The second statement follows from the first: $0_{1} x=\left(1+1^{*}\right) x=x+1^{*} x=$ $x+x^{*}=0_{x}$, and likewise $x 0_{1}=0_{x}$.

Proposition 4.3. In any regular semiring S, the subsemigroup generated by $\left\{1,1^{*}\right\} \subseteq S$ is in fact a subring.

Proof. Let R be the subsemigroup generated by 1 and 1^{*}. For R to be a subring of S, it must be an abelian group under addition, be closed under multiplication, and contain the multiplicative identity $1 \in S$. The last of these is obviously true; I will prove the other two requirements in turn.

- Let x be an element of R. By the definition of R (and by commutativity), x can be written as a sum $1+\cdots+1+1^{*}+\cdots+1^{*}$.
By propositions 2.6 and 2.4, we have $0_{x}=0_{1}+\cdots+0_{1}+0_{1^{*}}+\cdots+0_{1^{*}}=$ $0_{1}+\cdots+0_{1}=0_{1}$. Thus $0_{1}+x=x$ and $x+x^{*}=0_{1}$.
By the same propositions, we also have $x^{*}=1^{*}+\cdots+1^{*}+\left(1^{*}\right)^{*}+\cdots+$ $\left(1^{*}\right)^{*}=1^{*}+\cdots+1^{*}+1+\cdots+1$, and thus $x^{*} \in R$.
In summary, for all $x \in R$ we have $0_{1}+x=x, x^{*} \in R$, and $x+x^{*}=0_{1}$. Thus R is an abelian group under addition, with 0_{1} as its identity.
- Note that proposition 4.2 implies that $1^{*} 1^{*}=\left(1^{*}\right)^{*}=1$. Let x and y be elements of R. Each can each be written as a sum of copies of 1 and 1^{*}; thus the product $x y$ can be written as a sum of copies of $1 \cdot 1,1 \cdot 1^{*}, 1^{*} 1$, and $1^{*} 1^{*}$. But these are equal to $1,1^{*}, 1^{*}$, and 1 respectively, so $x y \in R$. So R is closed under multiplication.

Proposition 4.4. Let S and T be semirings, and $f: S \rightarrow T$ a homomorphism of semirings. If S is regular, then T is regular.

Proof. If S is regular, there is some $a \in S$ such that $1+a+1=1$. Applying f to this equation (and using the fact that f is a homomorphism), we get $1+f(a)+1=1$. Therefore, T is also regular.

Proposition 4.5. Let S be a semiring. If S is regular, there is exactly one homomorphism of semirings from \mathbb{Z} to S, and if S is not regular, there are no homomorphisms from \mathbb{Z} to S.

Proof. The second half follows from proposition 4.4 , \mathbb{Z} is a regular semiring, so if $f: \mathbb{Z} \rightarrow S$ is a homomorphism of semirings, S must be regular. If S is not regular, there can be no such homomorphism.

To prove the first half, let S be a regular semiring. By proposition 4.3 , S contains a subring R. \mathbb{Z} is initial in the category of rings, so there exists a (unique) homomorphism from \mathbb{Z} to R, which can be composed with the inclusion of R into S to get a homomorphism $f: \mathbb{Z} \rightarrow S$. We have $f(1)=1$ and $f(-1)=1^{*}$ (as 1^{*} is the negative of $1 \in R$).

Suppose $g: \mathbb{Z} \rightarrow S$ is another homomorphism. We have $g(1)=1$, and it is easy to show that $g(-1)$ is an inverse of $1 \in S$, so $g(-1)$ must be 1^{*}. The numbers 1 and -1 generate \mathbb{Z}, so if two homomorphisms agree on 1 and -1 , they must be equal. Thus $g=f$.

If A is a commutative semigroup, the set of endomorphisms of A forms a semiring where addition is defined pointwise and multiplication is defined by composition of endomorphisms. This semiring is called the endomorphism semiring of A and is denoted $\operatorname{End}(A)$. It is analogous to the endomorphism ring of an abelian group. The following theorem describes an important connection between RCSs and regular semirings.

Proposition 4.6. A commutative semigroup is regular if and only if its endomorphism semiring is regular.

Proof. Let A be an RCS. The multiplicative identity $1 \in \operatorname{End}(A)$ (which is the identity function on A) has a pseudoinverse (in fact an inverse) $\sigma \in \operatorname{End}(A)$ defined by $\sigma(x)=x^{*}$. (σ is an endomorphism by proposition 2.6) Thus $\operatorname{End}(A)$ is a regular semiring.

Conversely, let A be a commutative semigroup such that $\operatorname{End}(A)$ is a regular semiring. This means there exists $\sigma \in \operatorname{End}(A)$ such that $1+\sigma+1=1$. Let x be an element of A. We have $x+\sigma(x)+x=(1+\sigma+1)(x)=1(x)=x$. Thus x has a pseudoinverse.

5 Semimodules and Semialgebras

Recall that an algebra over a commutative R is a ring R^{\prime} equipped with a homomorphism from R to R^{\prime}. Likewise, a module over R is an abelian group A equipped with a ring homomorphism from R to $\operatorname{End}(A)$.

These definitions are easily generalized to commutative semirings. I will define a semialgebra over a commutative semiring S to be a semiring S^{\prime} equipped with a homomorphism from S to S^{\prime}, and define a semimodule over S to be a commutative semigroup A equipped with a semiring homomorphism from S to $\operatorname{End}(A)$.

Various propositions proved in section 4 imply the following:

1. A semialgebra over \mathbb{Z} is precisely a regular semiring. (Every \mathbb{Z}-semialgebra is a regular semiring, and every regular semiring is a \mathbb{Z}-semialgebra in exactly one way.) (props. $4.4 \& 4.5$
2. A semimodule over \mathbb{Z} is precisely an RCS. (Every \mathbb{Z}-semimodule is an RCS, and every RCS is a \mathbb{Z}-semimodule in exactly one way.) (props. 4.4 , 4.5 . \& 4.6)

Let \mathbb{Z}_{+}be the semiring of positive integers under the usual operations of addition and multiplication. \mathbb{Z}_{+}is initial in the category of semirings: for any semiring S, there is exactly one homomorphism from \mathbb{Z}_{+}to S. Therefore, a semialgebra over \mathbb{Z}_{+}is just a semiring, and a semimodule over \mathbb{Z}_{+}is just a commutative semigroup. This gives us the following hierarchy of notions:

- A semialgebra over \mathbb{Z}_{+}is a semiring.
- A semialgebra over \mathbb{Z} is a regular semiring.
- An algebra over \mathbb{Z} is a ring.
- A semimodule over \mathbb{Z}_{+}is a commutative semigroup.
- A semimodule over \mathbb{Z} is an RCS.
- A module over \mathbb{Z} is an abelian group.

Intuitively, RCSs are a natural answer to the question "what lies between commutative semigroups and abelian groups?" and regular semirings are a natural answer to "what lies between semirings and rings?"

I find it likely that the classification of RCSs in terms of abelian groups given in section 3 could be extended into a classification of R-semimodules in terms of R-modules, where R is any commutative ring. In particular, I conjecture that just as every RCS can be constructed from a semilattice-indexed diagram of abelian groups and group homomorphisms, every R-semimodule can be constructed from a semilattice-indexed diagram of R-modules and R-linear maps. I may prove this in a future article.

