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1 Introduction

Regular commutative semigroups are a generalization of abelian groups. They
are defined by replacing the “identity” and “inverse” axioms of an abelian group
with the weaker requirement that every element have a “pseudoinverse.” In a
regular commutative semigroup (or RCS), there need not be a “global” zero
element 0 such that 0 + x = z for all z; instead, each element = has its own
“local” zero, denoted 0,.

I came up with this generalization of an abelian group independently, and
studied it for several days before learning that the axiom I was researching al-
ready had a name: regularity. According to Wikipedia, “regular semigroups are
one of the most-studied classes of semigroups.” However, to my knowledge, little
attention has been paid to the commutative case. Nearly all of the theorems in
this paper are my own; the first three (propositions 2.1, 2.2, and 2.3) are the
only exceptions.

In section 2 (Regular Commutative Semigroups), I give the precise definition
of an RCS, and prove several results about them. In section 3 (Classification of
RCSs), I describe a universal way of constructing an RCS out of a semilattice
and a diagram of abelian groups. In section 4 (Regular Semirings), I define
the notion of a “regular semiring,” and prove several theorems about these
structures and their connection to RCSs. Finally, in section 5 (Semimodules
and Semialgebras), I characterize RCSs as semimodules over the integers.

2 Regular Commutative Semigroups

Let A be a semigroup, and a, b elements of A. If a + b+ a = a, then b is said
to be a pseudoinverse of a. If, in addition, b + a + b = b, then b is said to be
an inverse of a. (Note that, in a monoid, this is weaker than the requirement
that a + b equal the identity.)

A semigroup A is said to be regular if every element has a pseudoinverse,
i.e. for all @ € A there is some b € A such that a +b+ a = a. A regu-
lar commutative semigroup (RCS) is a commutative semigroup which is
regular.



Proposition 2.1. Every element of a regular semigroup has at least one inverse.

Proof. Let A be a regular semigroup, and a an element of A. By regularity,
there exists b € A with a+b+a =a. Let c=b+a+0b. It is easy to check that
a+c+a=aandc+a+ c=c. In other words, ¢ is an inverse of a. O

Proposition 2.2. Every element of a commutative semigroup has at most one
1muverse.

Proof. Let A be a commutative semigroup, and a an element of A. Suppose b
and c are inverses of a; we havea+b+a=a,b+a+b=0b,a+c+a=a, and
¢+ a+ ¢ = c. One can show, via a chain of equalities, that b and ¢ are equal:

b=b+a+b
=b+a+c+a+b
=b+a+ct+a+ct+a+b
=c+a+bta+bt+a+c
=c+a+b+a+c
=c+a+tc

=c.
By combining propositions [2.1] and we get the following:
Proposition 2.3. FEvery element of an RCS has exactly one inverse.

If x is an element of an RCS, I will denote its unique inverse as =*, and define
0, to be the sum x + z*.

Proposition 2.4. The following equations hold for any element x of an RCS:
1. 0, +zxz==x

O0p +2* =2z*

0z +0, =0,

0o, = 0

(02)" =0,

(x*)* ==z

O:L’* = Oz
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Proof. The first three statements are easy: simply replace 0, with x 4+ x* and
use the fact that x and z* are inverses. I will prove the rest of the statements
in turn.



4. 0g, =0, 4+ (04)* =0, + 0, + (0,)* = 0.

5. 0, is an inverse of 0., since 0, + 0, + 0, = 0, by statement 3. Inverses
are unique, so (0;)* = 0.

6. x is an inverse of z*, since the “inverse” relation is symmetric. Inverses
are unique, so (z*)* = x.

7. This follows from statement 6: 0,« = x* + (2*)* = 2* + 2 = 0,. O

The following theorem characterizes the idempotent elements of an RCS. (An
element x is called idempotent if x + 2 = x.)

Proposition 2.5. For any element a of an RCS, the following are equivalent:
1. a is idempotent,
2. 0, =a,
3. a =0, for some x.

Proof. Property 2 clearly implies property 3: simply take x = a. Property 3
implies property 1 because 0, + 0, = 0,. All that remains is to show that
property 1 implies property 2.

Suppose a is idempotent. Then a is its own inverse, because a + a + a =
a+ a = a. We then have 0, =a+a* =a—+a = a. O

Proposition 2.6. The following equations hold for any elements x,y of an
RCS:

L (z+y) =a"+y
2. 0pyy =0, 40,

Proof. Tt is easy to check that z* + y* is an inverse of x + y. Since inverses are
unique, this implies (z + y)* = x* + y*.

The second equation is a consequence of the first: we have 0,1, =z +y +
(+y) =c+y+a*+y" =040, O

I will now introduce some notation. If A is an RCS, I will define ( : A — A and
Z 4 C A as follows:

e ((z) =04
e Zy={zecA|lz+ax=2z}

By proposition ¢ is an endomorphism of A, and by proposition the
image of ¢ is Z4. Moreover, it was shown in proposition 2.4] that 0y, = x for all
x, which means that ¢ is an idempotent function in the sense that (o{ = (. In
summary, one can think of ¢ as projecting the whole of A onto Z4 (the subset
of idempotent elements) in a way that preserves addition.

For any a € Zy4, I will define G(a) C A to be the fiber of ¢ at a. In other
words, G(a) ={zr € A|0, =a}.



Proposition 2.7. For any RCS A and for alla € Z 4, G(a) is an abelian group
with a as its identity.

Proof.

e G(a) is closed under addition: If 0, = 0, = @ then 0y, = 0, +0, =
a+a=a.

e (G(a) has a as an identity: If 0, = a then a + = = .

e G(a) has inverses (in the group sense): If 0, = a then 0y« = a (since
0z+ =0.), and = 4+ z* = a. O

Remark. The subsets G(a) are pairwise disjoint, and their union is the whole
of A. (This is true for the fibers of any function.) Thus {G(a) | a € Za} is
a partition of A into abelian groups. The following propositions describe the
relationships between these groups:

Proposition 2.8. For any RCS A and for all a,b € Z 4, the function ¢y : A —
A defined by ¢p(x) = x + b is a group homomorphism from G(a) to G(a +b).

Proof. First, it is necessary to show that ¢, maps G(a) into G(a+b). If z € G(a)
then 0y, (z) = Oz46 = 0, + 0y = a +b. Thus ¢y(x) € G(a +b).

All that remains is to show that ¢ preserves addition. We have ¢, (z +y) =
x+y+band ¢p(x)+dp(y) = x+b+y+b=2x+y+0b (since b is idempotent). O

Proposition 2.9. For any RCS A and for all a,b,c € Z 4 such that a+b = a+-c,
the functions ¢p(x) = x + b and ¢.(x) = x + ¢ are equal on elements of G(a).

Proof. If € G(a), then x =  +a. We have ¢p(z) =z +b=z+a+b =
rH+a+c=x+c= d.(z). O

3 Classification of RCSs

Recall that a semilattice is a commutative semigroup in which every element is
idempotent. Every semilattice Z has a canonical partial order on its elements:
if @ and b are elements of Z, one says a < b if there exists x € Z such that
a+x = b. The set of idempotent elements of any commutative semigroup forms
a semilattice.

The theorem below defines a very general way of constructing an RCS out
of a semilattice and a family of abelian groups:

Theorem 3.1. Let Z be a semilattice, and {Gylacz a Z-indexed family of
abelian groups. Let {¢qp : Go — Gpla<p be a family of group homomorphisms
indezed by pairs a,b € Z with a < b, such that ¢q,, = id for all a, and ¢p,c 0
bap = Pa,c for all a < b < c. Then the disjoint union A =[],., Ga is an RCS
with © + vy defined as ¢g a+6(T) + Gp,a46(y) for x € G, and y € Gy.

Remark. The required data could be defined more concisely as a semilattice Z
along with a functor from (Z, <) to the category of abelian groups.



Proof. T will check commutativity, associativity, and regularity in turn.

o Commutativity: Let z € G, and y € Gp. We have x + y = ¢q q10(x) +

Obarb(y), and vy + & = Gpptraly) + Pabta(z). These are equal, since
addition in Z and addition in G4y, are both commutative.

e Associativity: Let @ € G4, y € Gy, and z € G.. We have x + (y +
Z) = ¢a,a+b+c(m) + ¢b+07a+b+0(¢b7b+6(y) + ¢c,b+6(z)) = ¢a,a+b+0(x) +
Ob,a+b+c(Y) + Pe.atbrc(2). (This uses the fact that the ¢; ; are homomor-
phisms, as well as the functorial requirement placed on them.) Evaluating
(z +y) + z gives the same result.

e Regularity: Let z € G, and write —x for the inverse of z in G,. We have
T+ (—2)+2 = ¢g,a4a+a(T) + Pa.atata(—T) + Pa,a+a+a(T), where addition
on the left side is in A and addition on the right side is in G4yq44. But
a+a+a=a, S0 @qqtataq is the identity map, and the right side becomes
z + (—z) + z, which is just z. O

Below are two examples of this rather useful construction.

Example 3.2. Let Z be the semilattice {0,00}, where + and < are as you
would expect. Define Gy to be the group (Z, +) of integers under addition, and
G~ to be the trivial group whose element I will denote co. There is only one
way to define the ¢; ;: we have ¢ = id, doo,00 = id, and ¢g o0 (n) = oo for all
n.

The resulting RCS is the set Z U oo where addition is defined such that
00 4+ x = oo for all z. The inverse of n is —n for n € Z, and the inverse of oo is
00.

Example 3.3. Let X be a topological space. Let Z be the semilattice of open
subsets of X under the operation of intersection. For open sets U,V € Z, we
have U <V it U D V. For U € Z, let Gy be the additive group of continuous
functions from U to R, and for U,V € Z such that U D V, let ¢yv : Gy — Gy
be the homomorphism that restricts a function defined on U to one defined on
V.

The resulting RCS is isomorphic to the set of pairs (U, f) where U is an open
subset of X and f is a continuous function from U to R, and where the sum
(U, )+ (V,g) isequal to (UNV, f+g).

For example, if X = R and U is the set of positive real numbers, we would
have (U,z — ) + (R,z — 2) = (U,z — L +2).

Theorem 3.4. Any RCS can be constructed by the method in theorem[3.1].

Proof. Let A be an RCS. Let Z be the semilattice of idempotent elements of A,
and for each a € Z, let G, be the set {z € A | 0, = a}. By proposition[2.7} each
G, is an abelian group. For a,b € Z such that a < b, define ¢, : G, — Gy as
¢a.b(x) = x + ¢ where ¢ is an element of Z such that a + ¢ = b. (By proposition
this is well defined; it does not matter which ¢ we choose.) ¢, is a group



homomorphism by proposition It is easy to check that ¢, , is the identity
for all @ € Z, and that ¢p.c 0 ¢pgp = g, for all a < b < c.

Applying the construction in theorem [3.1} we get an RCS whose underlying
set is the same as that of A, and whose addition law is = + y = ¢gars(z) +
Ob,at+b(y), where x € Gq, y € Gy, and the addition on the right is in A. This
simplifies to x + b+ vy +a =x + a + y + b, which is just = + y. O

4 Regular Semirings

For the purposes of this paper, I will define a semiring to be a set S equipped
with two binary operations + and - such that:

1. (S,4) is a commutative semigroup.
2. (S,+) is a monoid.
3. + and - together satisfy the right and left distributive laws.

Note that a semiring, under this definition, must have a multiplicative identity,
but need not have an additive identity. For example, the positive integers (under
the usual operations) form a semiring.

A regular semiring is a semiring in which the multiplicative identity has
an additive pseudoinverse. In other words, a semiring S is regular iff there exists
a € S such that 1 +a+1 =1 (where 1 is the multiplicative identity in 5).

Proposition 4.1. If S is a regular semiring, its additive semigroup (S,+) is

an RCS.

Proof. If S is regular, there exists a € S with 1+a+1 = 1. Let z be an element
of S. Multiplying the preceding equation by x and distributing, we find that
x + ax + x = x. So z has a pseudoinverse. O

Proposition 4.2. For every element x of a regular semiring, 1*x = x1* = z*

and 012 = 07 = 0.

Proof. 1* denotes the inverse of 1, s0 1 +1*4+1 =1 and 1* +1 4 1* = 1*.
Right-multiplying these equations by x, one finds that = + 1z + = = = and
1"z +x + 1"z = 1*x. So 1*x is the inverse of z, i.e. 1*x = z*. Likewise, by
left-multiplying the original equations by x, one finds that x1* = x*.

The second statement follows from the first: 012 = (14 1)z = 2 4+ 1*z =
x4+ x* = 0, and likewise 07 = 0. O

Proposition 4.3. In any reqular semiring S, the subsemigroup generated by
{1,1*} C S is in fact a subring.

Proof. Let R be the subsemigroup generated by 1 and 1*. For R to be a subring
of S, it must be an abelian group under addition, be closed under multiplication,
and contain the multiplicative identity 1 € S. The last of these is obviously true;
I will prove the other two requirements in turn.



e Let 2 be an element of R. By the definition of R (and by commutativity),
z can be written asasum 1+ ---+ 1+ 1% +--- 4 1%,

By propositions 2.6 and [2:4] we have 0, = 03+ ---+ 01 + 01« +- -+ 01« =
014+:--+0y =07. Thus 0y + z =z and = 4+ 2* = 0.

By the same propositions, we also have z* = 1* + - - + 1* + (1*)* +--- +
(I)*=1*4---4+1*+1+---+1, and thus 2* € R.

In summary, for all z € R we have 0y + z =z, 2* € R, and = + =* = 0.
Thus R is an abelian group under addition, with 0; as its identity.

e Note that proposition implies that 1*1* = (1*)* = 1. Let « and y be
elements of R. Each can each be written as a sum of copies of 1 and 1%;
thus the product zy can be written as a sum of copies of 1-1, 1-1%, 1*1,
and 1*1*. But these are equal to 1, 1*, 1*, and 1 respectively, so xy € R.
So R is closed under multiplication. O

Proposition 4.4. Let S and T be semirings, and f : S — T a homomorphism
of semirings. If S is reqular, then T is regular.

Proof. If S is regular, there is some a € S such that 1 +a+ 1 = 1. Applying
f to this equation (and using the fact that f is a homomorphism), we get
1+ f(a) + 1 = 1. Therefore, T is also regular. O

Proposition 4.5. Let S be a semiring. If S is regular, there is exactly one
homomorphism of semirings from Z to S, and if S is not reqular, there are no
homomorphisms from Z to S.

Proof. The second half follows from proposition 7 is a regular semiring, so
if f:7Z — S is a homomorphism of semirings, S must be regular. If S is not
regular, there can be no such homomorphism.

To prove the first half, let S be a regular semiring. By proposition
S contains a subring R. Z is initial in the category of rings, so there exists a
(unique) homomorphism from Z to R, which can be composed with the inclusion
of R into S to get a homomorphism f : Z — S. We have f(1) = 1 and
f(=1) =1* (as 1* is the negative of 1 € R).

Suppose g : Z — S is another homomorphism. We have ¢g(1) = 1, and it
is easy to show that g(—1) is an inverse of 1 € S, so g(—1) must be 1*. The
numbers 1 and —1 generate Z, so if two homomorphisms agree on 1 and —1,
they must be equal. Thus g = f. O

If A is a commutative semigroup, the set of endomorphisms of A forms a semiring
where addition is defined pointwise and multiplication is defined by composition
of endomorphisms. This semiring is called the endomorphism semiring of A
and is denoted End(A). It is analogous to the endomorphism ring of an abelian
group. The following theorem describes an important connection between RCSs
and regular semirings.

Proposition 4.6. A commutative semigroup is reqular if and only if its endo-
morphism semiring is reqular.



Proof. Let A be an RCS. The multiplicative identity 1 € End(A) (which is
the identity function on A) has a pseudoinverse (in fact an inverse) o € End(A)
defined by o(z) = z*. (o is an endomorphism by proposition[2.6]) Thus End(A)
is a regular semiring.

Conversely, let A be a commutative semigroup such that End(A) is a regular
semiring. This means there exists o € End(A) such that 1+ 0+ 1 =1. Let x
be an element of A. We have z + o(z) + 2 = (1 4+ 0+ 1)(x) = 1(z) = . Thus
x has a pseudoinverse. O

5 Semimodules and Semialgebras

Recall that an algebra over a commutative R is a ring R’ equipped with a
homomorphism from R to R’. Likewise, a module over R is an abelian group
A equipped with a ring homomorphism from R to End(A).

These definitions are easily generalized to commutative semirings. I will de-
fine a semialgebra over a commutative semiring S to be a semiring S’ equipped
with a homomorphism from S to S’, and define a semimodule over S to be a
commutative semigroup A equipped with a semiring homomorphism from S to
End(A4).

Various propositions proved in section [d] imply the following:

1. A semialgebra over Z is precisely a regular semiring. (Every Z-semialgebra
is a regular semiring, and every regular semiring is a Z-semialgebra in

exactly one way.) (props. &

2. A semimodule over Z is precisely an RCS. (Every Z-semimodule is an
RCS, and every RCS is a Z-semimodule in exactly one way.) (props. (4.4
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Let Z, be the semiring of positive integers under the usual operations of
addition and multiplication. Z is initial in the category of semirings: for any
semiring S, there is exactly one homomorphism from Z, to S. Therefore, a
semialgebra over Z, is just a semiring, and a semimodule over Z, is just a
commutative semigroup. This gives us the following hierarchy of notions:

e A semialgebra over Z, is a semiring.

e A semialgebra over Z is a regular semiring.

An algebra over Z is a ring.

A semimodule over Z is a commutative semigroup.

A semimodule over Z is an RCS.

A module over Z is an abelian group.



Intuitively, RCSs are a natural answer to the question “what lies between
commutative semigroups and abelian groups?” and regular semirings are a nat-
ural answer to “what lies between semirings and rings?”

I find it likely that the classification of RCSs in terms of abelian groups
given in section [3] could be extended into a classification of R-semimodules
in terms of R-modules, where R is any commutative ring. In particular, I
conjecture that just as every RCS can be constructed from a semilattice-indexed
diagram of abelian groups and group homomorphisms, every R-semimodule can
be constructed from a semilattice-indexed diagram of R-modules and R-linear
maps. I may prove this in a future article.
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