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1 Introduction

Regular commutative semigroups are a generalization of abelian groups. They
are defined by replacing the “identity” and “inverse” axioms of an abelian group
with the weaker requirement that every element have a “pseudoinverse.” In a
regular commutative semigroup (or RCS), there need not be a “global” zero
element 0 such that 0 + x = x for all x; instead, each element x has its own
“local” zero, denoted 0x.

I came up with this generalization of an abelian group independently, and
studied it for several days before learning that the axiom I was researching al-
ready had a name: regularity. According to Wikipedia, “regular semigroups are
one of the most-studied classes of semigroups.” However, to my knowledge, little
attention has been paid to the commutative case. Nearly all of the theorems in
this paper are my own; the first three (propositions 2.1, 2.2, and 2.3) are the
only exceptions.

In section 2 (Regular Commutative Semigroups), I give the precise definition
of an RCS, and prove several results about them. In section 3 (Classification of
RCSs), I describe a universal way of constructing an RCS out of a semilattice
and a diagram of abelian groups. In section 4 (Regular Semirings), I define
the notion of a “regular semiring,” and prove several theorems about these
structures and their connection to RCSs. Finally, in section 5 (Semimodules
and Semialgebras), I characterize RCSs as semimodules over the integers.

2 Regular Commutative Semigroups

Let A be a semigroup, and a, b elements of A. If a + b + a = a, then b is said
to be a pseudoinverse of a. If, in addition, b+ a+ b = b, then b is said to be
an inverse of a. (Note that, in a monoid, this is weaker than the requirement
that a+ b equal the identity.)

A semigroup A is said to be regular if every element has a pseudoinverse,
i.e. for all a ∈ A there is some b ∈ A such that a + b + a = a. A regu-
lar commutative semigroup (RCS) is a commutative semigroup which is
regular.
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Proposition 2.1. Every element of a regular semigroup has at least one inverse.

Proof. Let A be a regular semigroup, and a an element of A. By regularity,
there exists b ∈ A with a+ b+ a = a. Let c = b+ a+ b. It is easy to check that
a+ c+ a = a and c+ a+ c = c. In other words, c is an inverse of a.

Proposition 2.2. Every element of a commutative semigroup has at most one
inverse.

Proof. Let A be a commutative semigroup, and a an element of A. Suppose b
and c are inverses of a; we have a+ b+ a = a, b+ a+ b = b, a+ c+ a = a, and
c+ a+ c = c. One can show, via a chain of equalities, that b and c are equal:

b = b+ a+ b

= b+ a+ c+ a+ b

= b+ a+ c+ a+ c+ a+ b

= c+ a+ b+ a+ b+ a+ c

= c+ a+ b+ a+ c

= c+ a+ c

= c.

By combining propositions 2.1 and 2.2, we get the following:

Proposition 2.3. Every element of an RCS has exactly one inverse.

If x is an element of an RCS, I will denote its unique inverse as x∗, and define
0x to be the sum x+ x∗.

Proposition 2.4. The following equations hold for any element x of an RCS:

1. 0x + x = x

2. 0x + x∗ = x∗

3. 0x + 0x = 0x

4. 00x = 0x

5. (0x)∗ = 0x

6. (x∗)∗ = x

7. 0x∗ = 0x

Proof. The first three statements are easy: simply replace 0x with x + x∗ and
use the fact that x and x∗ are inverses. I will prove the rest of the statements
in turn.
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4. 00x = 0x + (0x)∗ = 0x + 0x + (0x)∗ = 0x.

5. 0x is an inverse of 0x, since 0x + 0x + 0x = 0x by statement 3. Inverses
are unique, so (0x)∗ = 0x.

6. x is an inverse of x∗, since the “inverse” relation is symmetric. Inverses
are unique, so (x∗)∗ = x.

7. This follows from statement 6: 0x∗ = x∗ + (x∗)∗ = x∗ + x = 0x.

The following theorem characterizes the idempotent elements of an RCS. (An
element x is called idempotent if x+ x = x.)

Proposition 2.5. For any element a of an RCS, the following are equivalent:

1. a is idempotent,

2. 0a = a,

3. a = 0x for some x.

Proof. Property 2 clearly implies property 3: simply take x = a. Property 3
implies property 1 because 0x + 0x = 0x. All that remains is to show that
property 1 implies property 2.

Suppose a is idempotent. Then a is its own inverse, because a + a + a =
a+ a = a. We then have 0a = a+ a∗ = a+ a = a.

Proposition 2.6. The following equations hold for any elements x, y of an
RCS:

1. (x+ y)∗ = x∗ + y∗

2. 0x+y = 0x + 0y

Proof. It is easy to check that x∗ + y∗ is an inverse of x+ y. Since inverses are
unique, this implies (x+ y)∗ = x∗ + y∗.

The second equation is a consequence of the first: we have 0x+y = x + y +
(x+ y)∗ = x+ y + x∗ + y∗ = 0x + 0y.

I will now introduce some notation. If A is an RCS, I will define ζ : A→ A and
ZA ⊆ A as follows:

• ζ(x) = 0x

• ZA = {x ∈ A | x+ x = x}

By proposition 2.6, ζ is an endomorphism of A, and by proposition 2.5, the
image of ζ is ZA. Moreover, it was shown in proposition 2.4 that 00x = x for all
x, which means that ζ is an idempotent function in the sense that ζ ◦ ζ = ζ. In
summary, one can think of ζ as projecting the whole of A onto ZA (the subset
of idempotent elements) in a way that preserves addition.

For any a ∈ ZA, I will define G(a) ⊆ A to be the fiber of ζ at a. In other
words, G(a) = {x ∈ A | 0x = a}.

3



Proposition 2.7. For any RCS A and for all a ∈ ZA, G(a) is an abelian group
with a as its identity.

Proof.

• G(a) is closed under addition: If 0x = 0y = a then 0x+y = 0x + 0y =
a+ a = a.

• G(a) has a as an identity: If 0x = a then a+ x = x.

• G(a) has inverses (in the group sense): If 0x = a then 0x∗ = a (since
0x∗ = 0x), and x+ x∗ = a.

Remark. The subsets G(a) are pairwise disjoint, and their union is the whole
of A. (This is true for the fibers of any function.) Thus {G(a) | a ∈ ZA} is
a partition of A into abelian groups. The following propositions describe the
relationships between these groups:

Proposition 2.8. For any RCS A and for all a, b ∈ ZA, the function φb : A→
A defined by φb(x) = x+ b is a group homomorphism from G(a) to G(a+ b).

Proof. First, it is necessary to show that φb maps G(a) into G(a+b). If x ∈ G(a)
then 0φb(x) = 0x+b = 0x + 0b = a+ b. Thus φb(x) ∈ G(a+ b).

All that remains is to show that φb preserves addition. We have φb(x+ y) =
x+y+b and φb(x)+φb(y) = x+b+y+b = x+y+b (since b is idempotent).

Proposition 2.9. For any RCS A and for all a, b, c ∈ ZA such that a+b = a+c,
the functions φb(x) = x+ b and φc(x) = x+ c are equal on elements of G(a).

Proof. If x ∈ G(a), then x = x + a. We have φb(x) = x + b = x + a + b =
x+ a+ c = x+ c = φc(x).

3 Classification of RCSs

Recall that a semilattice is a commutative semigroup in which every element is
idempotent. Every semilattice Z has a canonical partial order on its elements:
if a and b are elements of Z, one says a ≤ b if there exists x ∈ Z such that
a+x = b. The set of idempotent elements of any commutative semigroup forms
a semilattice.

The theorem below defines a very general way of constructing an RCS out
of a semilattice and a family of abelian groups:

Theorem 3.1. Let Z be a semilattice, and {Ga}a∈Z a Z-indexed family of
abelian groups. Let {φa,b : Ga → Gb}a≤b be a family of group homomorphisms
indexed by pairs a, b ∈ Z with a ≤ b, such that φa,a = id for all a, and φb,c ◦
φa,b = φa,c for all a ≤ b ≤ c. Then the disjoint union A =

∐
a∈Z Ga is an RCS

with x+ y defined as φa,a+b(x) + φb,a+b(y) for x ∈ Ga and y ∈ Gb.

Remark. The required data could be defined more concisely as a semilattice Z
along with a functor from (Z,≤) to the category of abelian groups.
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Proof. I will check commutativity, associativity, and regularity in turn.

• Commutativity: Let x ∈ Ga and y ∈ Gb. We have x + y = φa,a+b(x) +
φb,a+b(y), and y + x = φb,b+a(y) + φa,b+a(x). These are equal, since
addition in Z and addition in Ga+b are both commutative.

• Associativity: Let x ∈ Ga, y ∈ Gb, and z ∈ Gc. We have x + (y +
z) = φa,a+b+c(x) + φb+c,a+b+c(φb,b+c(y) + φc,b+c(z)) = φa,a+b+c(x) +
φb,a+b+c(y) + φc,a+b+c(z). (This uses the fact that the φi,j are homomor-
phisms, as well as the functorial requirement placed on them.) Evaluating
(x+ y) + z gives the same result.

• Regularity: Let x ∈ Ga and write −x for the inverse of x in Ga. We have
x+(−x)+x = φa,a+a+a(x)+φa,a+a+a(−x)+φa,a+a+a(x), where addition
on the left side is in A and addition on the right side is in Ga+a+a. But
a+ a+ a = a, so φa,a+a+a is the identity map, and the right side becomes
x+ (−x) + x, which is just x.

Below are two examples of this rather useful construction.

Example 3.2. Let Z be the semilattice {0,∞}, where + and ≤ are as you
would expect. Define G0 to be the group (Z,+) of integers under addition, and
G∞ to be the trivial group whose element I will denote ∞. There is only one
way to define the φi,j : we have φ0,0 = id, φ∞,∞ = id, and φ0,∞(n) =∞ for all
n.

The resulting RCS is the set Z ∪ ∞ where addition is defined such that
∞+ x =∞ for all x. The inverse of n is −n for n ∈ Z, and the inverse of ∞ is
∞.

Example 3.3. Let X be a topological space. Let Z be the semilattice of open
subsets of X under the operation of intersection. For open sets U, V ∈ Z, we
have U ≤ V iff U ⊇ V . For U ∈ Z, let GU be the additive group of continuous
functions from U to R, and for U, V ∈ Z such that U ⊇ V , let φU,V : GU → GV
be the homomorphism that restricts a function defined on U to one defined on
V .

The resulting RCS is isomorphic to the set of pairs (U, f) where U is an open
subset of X and f is a continuous function from U to R, and where the sum
(U, f) + (V, g) is equal to (U ∩ V, f + g).

For example, if X = R and U is the set of positive real numbers, we would
have (U, x 7→ 1

x ) + (R, x 7→ 2) = (U, x 7→ 1
x + 2).

Theorem 3.4. Any RCS can be constructed by the method in theorem 3.1.

Proof. Let A be an RCS. Let Z be the semilattice of idempotent elements of A,
and for each a ∈ Z, let Ga be the set {x ∈ A | 0x = a}. By proposition 2.7, each
Ga is an abelian group. For a, b ∈ Z such that a ≤ b, define φa,b : Ga → Gb as
φa,b(x) = x+ c where c is an element of Z such that a+ c = b. (By proposition
2.9, this is well defined; it does not matter which c we choose.) φa,b is a group
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homomorphism by proposition 2.8. It is easy to check that φa,a is the identity
for all a ∈ Z, and that φb,c ◦ φa,b = φa,c for all a ≤ b ≤ c.

Applying the construction in theorem 3.1, we get an RCS whose underlying
set is the same as that of A, and whose addition law is x + y = φa,a+b(x) +
φb,a+b(y), where x ∈ Ga, y ∈ Gb, and the addition on the right is in A. This
simplifies to x+ b+ y + a = x+ a+ y + b, which is just x+ y.

4 Regular Semirings

For the purposes of this paper, I will define a semiring to be a set S equipped
with two binary operations + and · such that:

1. (S,+) is a commutative semigroup.

2. (S, ·) is a monoid.

3. + and · together satisfy the right and left distributive laws.

Note that a semiring, under this definition, must have a multiplicative identity,
but need not have an additive identity. For example, the positive integers (under
the usual operations) form a semiring.

A regular semiring is a semiring in which the multiplicative identity has
an additive pseudoinverse. In other words, a semiring S is regular iff there exists
a ∈ S such that 1 + a+ 1 = 1 (where 1 is the multiplicative identity in S).

Proposition 4.1. If S is a regular semiring, its additive semigroup (S,+) is
an RCS.

Proof. If S is regular, there exists a ∈ S with 1+a+1 = 1. Let x be an element
of S. Multiplying the preceding equation by x and distributing, we find that
x+ ax+ x = x. So x has a pseudoinverse.

Proposition 4.2. For every element x of a regular semiring, 1∗x = x1∗ = x∗

and 01x = x01 = 0x.

Proof. 1∗ denotes the inverse of 1, so 1 + 1∗ + 1 = 1 and 1∗ + 1 + 1∗ = 1∗.
Right-multiplying these equations by x, one finds that x + 1∗x + x = x and
1∗x + x + 1∗x = 1∗x. So 1∗x is the inverse of x, i.e. 1∗x = x∗. Likewise, by
left-multiplying the original equations by x, one finds that x1∗ = x∗.

The second statement follows from the first: 01x = (1 + 1∗)x = x + 1∗x =
x+ x∗ = 0x, and likewise x01 = 0x.

Proposition 4.3. In any regular semiring S, the subsemigroup generated by
{1, 1∗} ⊆ S is in fact a subring.

Proof. Let R be the subsemigroup generated by 1 and 1∗. For R to be a subring
of S, it must be an abelian group under addition, be closed under multiplication,
and contain the multiplicative identity 1 ∈ S. The last of these is obviously true;
I will prove the other two requirements in turn.
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• Let x be an element of R. By the definition of R (and by commutativity),
x can be written as a sum 1 + · · ·+ 1 + 1∗ + · · ·+ 1∗.

By propositions 2.6 and 2.4, we have 0x = 01 + · · ·+ 01 + 01∗ + · · ·+ 01∗ =
01 + · · ·+ 01 = 01. Thus 01 + x = x and x+ x∗ = 01.

By the same propositions, we also have x∗ = 1∗ + · · ·+ 1∗ + (1∗)∗ + · · ·+
(1∗)∗ = 1∗ + · · ·+ 1∗ + 1 + · · ·+ 1, and thus x∗ ∈ R.

In summary, for all x ∈ R we have 01 + x = x, x∗ ∈ R, and x+ x∗ = 01.
Thus R is an abelian group under addition, with 01 as its identity.

• Note that proposition 4.2 implies that 1∗1∗ = (1∗)∗ = 1. Let x and y be
elements of R. Each can each be written as a sum of copies of 1 and 1∗;
thus the product xy can be written as a sum of copies of 1 · 1, 1 · 1∗, 1∗1,
and 1∗1∗. But these are equal to 1, 1∗, 1∗, and 1 respectively, so xy ∈ R.
So R is closed under multiplication.

Proposition 4.4. Let S and T be semirings, and f : S → T a homomorphism
of semirings. If S is regular, then T is regular.

Proof. If S is regular, there is some a ∈ S such that 1 + a + 1 = 1. Applying
f to this equation (and using the fact that f is a homomorphism), we get
1 + f(a) + 1 = 1. Therefore, T is also regular.

Proposition 4.5. Let S be a semiring. If S is regular, there is exactly one
homomorphism of semirings from Z to S, and if S is not regular, there are no
homomorphisms from Z to S.

Proof. The second half follows from proposition 4.4: Z is a regular semiring, so
if f : Z → S is a homomorphism of semirings, S must be regular. If S is not
regular, there can be no such homomorphism.

To prove the first half, let S be a regular semiring. By proposition 4.3,
S contains a subring R. Z is initial in the category of rings, so there exists a
(unique) homomorphism from Z to R, which can be composed with the inclusion
of R into S to get a homomorphism f : Z → S. We have f(1) = 1 and
f(−1) = 1∗ (as 1∗ is the negative of 1 ∈ R).

Suppose g : Z → S is another homomorphism. We have g(1) = 1, and it
is easy to show that g(−1) is an inverse of 1 ∈ S, so g(−1) must be 1∗. The
numbers 1 and −1 generate Z, so if two homomorphisms agree on 1 and −1,
they must be equal. Thus g = f .

If A is a commutative semigroup, the set of endomorphisms ofA forms a semiring
where addition is defined pointwise and multiplication is defined by composition
of endomorphisms. This semiring is called the endomorphism semiring of A
and is denoted End(A). It is analogous to the endomorphism ring of an abelian
group. The following theorem describes an important connection between RCSs
and regular semirings.

Proposition 4.6. A commutative semigroup is regular if and only if its endo-
morphism semiring is regular.
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Proof. Let A be an RCS. The multiplicative identity 1 ∈ End(A) (which is
the identity function on A) has a pseudoinverse (in fact an inverse) σ ∈ End(A)
defined by σ(x) = x∗. (σ is an endomorphism by proposition 2.6.) Thus End(A)
is a regular semiring.

Conversely, let A be a commutative semigroup such that End(A) is a regular
semiring. This means there exists σ ∈ End(A) such that 1 + σ + 1 = 1. Let x
be an element of A. We have x+ σ(x) + x = (1 + σ + 1)(x) = 1(x) = x. Thus
x has a pseudoinverse.

5 Semimodules and Semialgebras

Recall that an algebra over a commutative R is a ring R′ equipped with a
homomorphism from R to R′. Likewise, a module over R is an abelian group
A equipped with a ring homomorphism from R to End(A).

These definitions are easily generalized to commutative semirings. I will de-
fine a semialgebra over a commutative semiring S to be a semiring S′ equipped
with a homomorphism from S to S′, and define a semimodule over S to be a
commutative semigroup A equipped with a semiring homomorphism from S to
End(A).

Various propositions proved in section 4 imply the following:

1. A semialgebra over Z is precisely a regular semiring. (Every Z-semialgebra
is a regular semiring, and every regular semiring is a Z-semialgebra in
exactly one way.) (props. 4.4 & 4.5)

2. A semimodule over Z is precisely an RCS. (Every Z-semimodule is an
RCS, and every RCS is a Z-semimodule in exactly one way.) (props. 4.4,
4.5, & 4.6)

Let Z+ be the semiring of positive integers under the usual operations of
addition and multiplication. Z+ is initial in the category of semirings: for any
semiring S, there is exactly one homomorphism from Z+ to S. Therefore, a
semialgebra over Z+ is just a semiring, and a semimodule over Z+ is just a
commutative semigroup. This gives us the following hierarchy of notions:

• A semialgebra over Z+ is a semiring.

• A semialgebra over Z is a regular semiring.

• An algebra over Z is a ring.

• A semimodule over Z+ is a commutative semigroup.

• A semimodule over Z is an RCS.

• A module over Z is an abelian group.
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Intuitively, RCSs are a natural answer to the question “what lies between
commutative semigroups and abelian groups?” and regular semirings are a nat-
ural answer to “what lies between semirings and rings?”

I find it likely that the classification of RCSs in terms of abelian groups
given in section 3 could be extended into a classification of R-semimodules
in terms of R-modules, where R is any commutative ring. In particular, I
conjecture that just as every RCS can be constructed from a semilattice-indexed
diagram of abelian groups and group homomorphisms, every R-semimodule can
be constructed from a semilattice-indexed diagram of R-modules and R-linear
maps. I may prove this in a future article.
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