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Abstract

Certain properties of gravity in general relativity — that it can bend the
trajectories of light rays, cause time to slow down, and in extreme cases
form strange objects known as “black holes” — are widely known. Also
widely known is the fact that the universe is expanding, and that a force
or substance known as “dark energy” may be causing its expansion to
accelerate. This work is an exposition of the mathematics behind such
statements, focusing on two relativistic spacetimes: the Schwarzschild and
FLRW (Friedmann-Lemâıtre-Robinson-Walker) universes.
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1 Background

1.1 History of Relativity

Before the 20th century, physicists believed that light was a wave traveling
through a medium known as the luminiferous ether. Light was said to always
move at the same speed relative to this ether. However, a number of experiments
during the 19th century proved to be problematic for this theory. For exam-
ple, an 1887 experiment by American physicists Albert Michelson and Edward
Morley found that light always travels at the same speed relative to the ground,
regardless of its direction of motion and regardless of the time of year. This
would imply that the Earth is always stationary in the ether, despite revolving
around the sun. On its own, this result could be explained by the complete ether
drag hypothesis, which states that the ether is “dragged” by nearby matter, such
as the Earth. But the 1851 Fizeau experiment, which measured the speed of
light through moving water, had already disproven complete ether drag.

After the Michelson-Morley experiment, no contemporary theory could explain
the speed of light. Hendrik Lorentz began to fix this problem in the 1890s,
developing what is now known as Lorentz ether theory. This theory was a pre-
cursor to Einstein’s special relativity, the primary differences being that Lorentz
held on to the notion of the ether, which constituted a single preferred refer-
ence frame, and made assumptions (such as length contraction) that are now
known to be superfluous. Finally, in his 1905 paper On the Electrodynamics
of Moving Bodies, Einstein showed how to derive the Lorentz transformation
from the single principle that light always moves at the same speed c in the
reference frame of any inertial (constant-velocity) observer. He also modified
the laws of mechanics to make them invariant under Lorentz transformations,
resolving certain asymmetries in classical electromagentism such as the moving
magnet and conductor problem. In Einstein’s theory, it could no longer be said
that electromagentism possesses any notion of absolute rest, making the ether
obsolete. The theory developed by Lorentz, Einstein, Poincare, and Minkowski
is now known as “special relativity,” in contrast to the more general theory of
general relativity, which incorporates gravity.

General relativity was developed by Einstein over the course of eight years, end-
ing with the publication of what is now known as the Einstein field equation in
1915. The utility of differential geometry — the mathematical basis of general
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relativity — was pointed out to Einstein by mathematician Marcel Grossmann.
The fundamental realization behind general relativity is that gravity is exclu-
sively a large-scale phenomenon; at (spatially and temporally) small scales,
it cannot be detected. For example, the experience of someone standing on
the Earth is the same as that of some of someone standing on an upwardly-
accelerating world in a universe without gravity. The only difference is that, in
our universe, objects whose velocities are intially equal can grow closer together
or farther apart over time. But this effect is only detectable on large scales —
objects dropped on opposite sides of the Earth obviously grow closer over time,
but this is not apparent for objects dropped a few meters apart. We can compare
gravity to the curvature of a sphere: up close, the sphere looks like a flat plane,
but on larger scales, its curvature is apparent in the fact that objects tracing
“straight lines” (geodesics) can grow closer together over time, even if they start
out parallel. General relativity takes this comparison to its ultimate conclusion
and states that gravity is curvature (of 4-dimensional spacetime rather than a
2-dimensional surface).

Since its inception, general relativity has been very successful. Among other
things, it accounted for a discrepancy between the observed perihelion precession
of Mercury and that predicted by Newtonian gravity, and correctly predicted
phenomena such as gravitational redshift, bending of light, and gravitational
waves.

1.2 Mathematics of Relativity

The spacetime of special relativity is a 4-dimensional vector space (known as
Minkowski space) equipped with a bilinear form η of signature (−,+,+,+).1

This means that there exist bases (a0, a1, a2, a3) such that η(a0) = −1, η(a1) =
η(a2) = η(a3) = 1, and η(ai, aj) = 0 for all i ̸= j. Such a basis is known in the
context of special relativity as an inertial reference frame.

An inertial reference frame A = (a0, a1, a2, a3) measures a point (or “event”)
x = x0a0 + x1a1 + x2a2 + x3a3 to occur at time x0/c and position (x1, x2, x3).

2

Events which are multiples of a0 have position (0, 0, 0), so this reference frame
corresponds to an observer moving in the direction of a0.

Depending on the value of η, a spacetime vector v is called timelike (η(v) < 0),
lightlike (η(v) = 0), or spacelike (η(v) > 0). Curves can be classified likewise;
for example, a lightlike curve is a curve all of whose tangent vectors are lightlike.
Massless objects such as light travel along lightlike curves (hence the name), and
are measured to have a speed of c in any inertial reference frame, while massive
objects travel along timelike curves.

1More accurately, spacetime is the affine space modeled on this vector space, since it has
no inherent “origin.”

2The conversion factor c allows one to use different units for time and distance, but is
unimportant from a purely mathematical perspective. It is not uncommon to use c = 1,
which amounts to measuring time in (say) seconds and distance in light-seconds.
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A linear map that converts one inertial reference frame into another is called
a Lorentz transformation. From the Lorenz transformation, one can derive a
number of (often counterintuitive) phenomena, such as length contraction, time
dilation, and the relativity of order of events. I could go into more detail, but
this paper is primarily concerned with the consequences of general relativity,
not special relativity.

General relativity replaces the flat Minkowski spacetime of special relativity
with an arbitrary Lorentzian manifold; that is, a 4-dimensional manifold M
equipped with a pseudo-Riemannian metric g of signature (−,+,+,+). The
tangent spaces of such a manifold are Minkowski spaces, so general relativity is
indistinguishable from special relativity at sufficiently small scales.

As in special relativity, tangent vectors and some curves can be classified as time-
like, lightlike, or spacelike, with slower-than-c particles traveling along timelike
curves, and free-falling particles traveling along geodesics. The amount of time
experienced by a particle traveling along timelike curve C is

1

c

∫ b

a

√
−g(γ′(λ)) dλ,

where γ : [a, b] → M is a parametrization of C (the parametrization used does
not matter). Similarly, the proper length of a spacelike curve is∫ b

a

√
g(γ′(λ)) dλ,

the only difference between the two formulas being the unit conversion factor c,
and a change in sign to keep the number inside the square root positive.

Given a particle traveling along a timelike curve with parametrization γ, its
4-velocity is defined as

cγ′(λ)√
−g(γ′(λ))

,

its 4-momentum is its 4-velocity times its mass, and its 4-acceleration is the
covariant derivative of 4-velocity (viewed as a vector field along a curve) with
respect to itself. The 4-acceleration of an object in free fall is 0, by the definition
of a geodesic.

The metric is constrained by the distribution of matter in the universe by the
equation

Ric− 1

2
Rg + Λg =

8πG

c4
T

where Ric is the Ricci curvature tensor, R is the Ricci curvature scalar, Λ is
a constant known as the cosmological constant, G is Newton’s gravitational
constant, and T is the stress-energy tensor. In a vacuum with zero cosmological
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constant (T = 0, Λ = 0), the equation above becomes equivalent to Ric = 0.3

That is, the vacuum solutions of general relativity are those that are Ricci flat.

2 The Schwarzschild Spacetime

In 1916, one year after Einstein published his field equation, Karl Schwarzschild,
a physicist and officer in the German army, found a solution to Einstein’s equa-
tion that models spacetime around a non-rotating spherical mass. This solution,
known as the Schwarzschild metric, predicts a number of interesting phenomena,
including gravitational time dilation, gravitational lensing (bending of light),
and the potential existence of black holes.

2.1 Derivation

The Schwarzschild metric is most commonly given in spherical coordinates
(x0, x1, x2, x3) = (ct, r, θ, ϕ). The most general formula for a metric in such
a coordinate system is

g =

3∑
i,j=0

gij dxi ⊗ dxj ,

where the gij are functions such that gij = gji for all i and j.

We can place more restrictions on the components of g by making some assump-
tions. First, we assume that g does not change over time, which means that
the gij do not depend on t, but only on r, θ, and ϕ. We also assume that g
is invariant under time reversal; mathematically, this means that replacing dx0

with −dx0 does not affect g. Negating dx0 is equivalent to negating the g0i
components for i ̸= 0,4 so these components must be 0. Physically, invariance
under time reversal corresponds to the mass at the center not rotating.

g should also be invariant under spatial reflection. Reflection across the hori-
zontal plane (sending θ to π− θ) causes dx2 = dθ to be negated, but leaves the
other dxis fixed. Similarly, reflection across a vertical plane (sending ϕ to −ϕ)
causes dx3 = dϕ to be negated. Thus g2i for i ̸= 2 and g3i for i ̸= 3 are all 0.
At this point, we know that all of the off-diagonal components of g are 0.

Finally, g should be invariant under spatial rotation. This implies two things:
that g00 and g11 do not depend on θ or ϕ, and that g, when restricted to a
sphere of constant t and r, is simply the standard metric on the sphere, possibly
scaled by some number that may depend on r. The standard metric on a sphere
of radius r, written in spherical coordinates, is

r2 dθ2 + r2(sin θ)2 dϕ2.

3To prove this, we take the “trace” (contraction with the inverse metric) on both sides of
Ric = 1

2
Rg, getting R = 2R and thus R = 0.

4g00 is not affected, since the two negatives cancel.
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So g is of the form

−A(r) dx2
0 +B(r) dr2 + C(r)r2 dθ2 + C(r)r2(sin θ)2 dϕ2.

We can get rid of C by replacing r with a new coordinate defined as
√
C(r) · r.

Then g becomes

−A(r) dx2
0 +B(r) dr2 + r2 dθ2 + r2(sin θ)2 dϕ2,

where A and B have now been reparametrized.

All that remains is to solve for the functions A and B. We do this by imposing
the Einstein vacuum equation on g, which is equivalent to the Ricci tensor of g
being 0. Three components of the Ricci tensor are

R00 = 2rABA′′ − rAA′B′ + 4ABA′ − rB(A′)2

R11 = −2rABA′′ + rAA′B′ + 4A2B′ + rB(A′)2

R22 = −2AB + 2AB2 − rA′B + rAB′.

The equation R00 + R11 = 0 simplifies to A′B + AB′ = 0, which implies that
AB = k for some constant k. If we assume that g approaches the flat Minkowski
metric as r → ∞, then A and B both approach 1 as r → ∞, which implies that
k = 1. Therefore, B = 1/A, so the equation R22 = 0 becomes

−2 + 2/A− 2rA′/A = 0.

Multiplying by A/2 on both sides and solving for A′, this becomes

A′ =
1−A

r
,

a differential equation whose solutions are of the form

A(r) = 1− rs
r

for some constant rs.

So the Schwarzschild metric is

g = −
(
1− rs

r

)
dx2

0 +
(
1− rs

r

)−1

dr2 + r2 dθ2 + r2(sin θ)2 dϕ2.

In summary, the Schwarzschild metric g is the only metric on (3+1)-dimensional
spacetime that is spherically symmetric, invariant under time translation and
reversal, approaches the Minkowski metric as r → ∞, and satisfies the Einstein
vacuum equation.

Note that g is undefined if r = 0 or if r = rs, as both of these cases result
in a division by 0. So the Schwarzschild metric is defined on two disconnected
regions: the region where r ∈ (0, rs) and the region where r ∈ (rs,∞). In the
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outer region, t is timelike and r is spacelike (as one would expect), but in the
inner region, t is spacelike and r is timelike. At the moment, these two regions
are separate Lorentzian manifolds, but as we will see later, they can both be
embedded into a larger Lorentzian manifold, a fact that becomes clear after a
change of coordinates.

The quantity rs is known as the Schwarzschild radius.

2.2 Physical Interpretation

If we imagine a universe containing only a single mass, which is spherically
symmetric and non-rotating, then the vacuum around the mass should have
all of the properties that imply the Schwarzschild metric. Therefore, if general
relativity is correct, this vacuum is described by the Schwarzschild metric. We
should expect objects traveling along geodesics in the Schwarzschild spacetime
to be drawn toward the center, and to behave the same as in Newtonian physics
in the limit of low velocity and low gravity, for if not, general relativity would
not be a viable theory of gravity.

The 4-velocity of an observer with constant r, θ, and ϕ (so stationary relative
to the mass at the center) is

c√
−g00

e0 =
c√

1− rs/r
e0.

The proper acceleration is the covariant derivative of the 4-velocity with respect
to itself, that is

c√
1− rs/r

∇e0

(
c√

1− rs/r
e0

)
=

c2

1− rs/r

3∑
i=0

Γi
00ei

=
c2r

r − rs

1

2

rs(r − rs)

r3
er =

c2rs
2r2

er.

So, to remain stationary, an object must have a constant outward proper accel-
eration. It follows that if it were following a geodesic, it would fall inward. If
we ignore the fact that the magnitude of er (i.e.

√
g11) is dependent on r (a fact

that is only of great significance if r is close to rs), we see that the acceleration
an object must have to remain stationary is proportional to r−2, just as in New-
tonian physics. Specifically, the acceleration predicted by Newton is GM/r2,
where G is the gravitational constant and M is the mass of the central object.
So, if general relativity becomes Newtonian gravity for a stationary object in
the limit as r → ∞ (and thus |er| → 1), we must have

c2rs
2r2

=
GM

r2
, i.e. rs =

2GM

c2
.

That is, the Schwarzschild radius is proportional to the mass of the central
object. The proportionality constant 2G/c2 is about 1.5×10−27 when measured
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in SI units of meters per kilogram, and about 2.95 when measured in kilometers
per solar mass. So the Schwarzschild radius of the Sun is about 2.95 kilometers.
Since this is much less than the radius of the Sun, and the Schwarzschild metric
is only valid in the vacuum outside of the Sun,5 the Schwarzschild metric stops
being accurate long before one reaches the Schwarzschild radius. The same is
true for most of the objects in our universe, which is why Newtonian gravity is
a good approximation in most situations.

If we do take into account the dependence of |er| on r, we find that the magnitude
of the proper acceleration of a stationary object is

c2rs
2r2

|er| =
GM

r2

(
1− rs

r

)−1/2

.

The factor (1 − rs/r)
−1/2 approaches ∞ as r → rs. So if r is close to rs, the

gravitational field is much stronger than Newtonian gravity would predict.

The sphere at r = rs is known as the event horizon. For reasons explained
above, most objects in nature do not have an event horizon, but in this paper
we are considering the pure Schwarzschild metric, which amounts to treating
the central object as a point mass. (If we were modeling the Sun, we might
use the Schwarzschild metric for r > rg and another (non-vacuum) metric for
r < rg, where rg is the radius of the Sun.)

2.3 Gravitational Time Dilation

The length of a stationary curve beginning at (0, r, θ, ϕ) and ending at (ct, r, θ, ϕ)
is

ct|e0| = ct
√
−g00 = ct

√
1− rs

r
.

The elapsed proper time is therefore related to the elapsed coordinate time by a
factor of

√
1− rs/r. This approaches 1 as r → ∞, but approaches 0 as r → rs.

As a result, a clock closer to the central mass will turn slower than a clock
farther from the central mass from the perspective of an outside observer. This
effect is known as gravitational time dilation. Since proper time approaches
coordinate time as r → ∞, we say that the time coordinate t = x0/c is time as
measured by an observer at infinity.

Since the ratio of proper time to coordinate time approaches 0 as r → rs, a
falling object will never actually reach the event horizon from the perspective
of an outside observer. (In the object’s own reference frame, it does reach the
event horizon in finite time, as we will see in Section 2.6.)

Gravitational time dilation is taken into account in the engineering of the atomic
clocks on GPS satellites. The gravitational time dilation experienced by these
satellites relative to the Earth’s surface amounts to about 46 microseconds per

5Approximately valid, that is. The Sun is not a perfect sphere of stationary matter (and
the space around it is not a perfect vacuum), but for our purposes it can be modeled as such.
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day (although it is partially countered by the kinematic time dilation of 7 µs
per day in the opposite direction). To account for this, the atomic clocks are
calibrated to run slightly slower than a typical atomic clock [3][1].

2.4 Spatial Curvature

The distance between (ct, r0, θ, ϕ) and (ct, r1, θ, ϕ) is not simply r1−r0. In other
words, the r coordinate is not an accurate reflection of radial distances. Instead,
since g11 is larger closer to rs, equal changes in r correspond to greater proper
distances closer to rs. For example, the proper distance between 2rs and 3rs is
greater than that between 3rs and 4rs.

More precisely, the length of a radial line segment from (ct, rs, θ, ϕ) to (ct, R, θ, ϕ)
is

D(R) =

∫ R

rs

√
g11(r) dr =

∫ R

rs

(
1− rs

r

)−1/2

dr

= R

√
1− rs

R
+ rs tanh

−1

(√
1− rs

R

)
,

and in general, the distance from (ct, r0, θ, ϕ) to (ct, r1, θ, ϕ) is D(r1)−D(r0).

Graphed, the function D looks like this:

Figure 1: D(r) = proper distance from rs to r. D′(r) =
√
g11(r) = ratio of

proper radial distance to coordinate radial distance in a small neighborhood.

Although the r coordinate does not accurately measure radial distance, it does
have a physical meaning: the circumference of a circle with constant r-coordinate
centered at the origin is 2πr. To prove this, consider the curve γ : [0, 2π] → M ,
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γ(θ) = (ct, r, θ, ϕ). The proper length of this curve is∫ 2π

0

√
g(γ′(θ), γ′(θ)) dθ =

∫ 2π

0

√
gθθ dθ =

∫ 2π

0

r dθ = 2πr.

This is not a coincidence. Recall that in Section 2.1, I got rid of the scaling
function C by redefining the r coordinate. The result of this was that r accu-
rately describes the sizes of spheres around the center. So we have a situation
where spheres have more space inside of them than their surface area would
predict in a Euclidean setting. (This is analogous to the situation on a sphere,
in which circles have more area than their circumferences would predict.) Space
is curved by gravity.

If we restrict the Schwarzschild metric to the equatorial plane with θ = π/2 and
t constant, then it can be isometrically embedded into 3D Euclidean space. In
cylindrical coordinates, one such embedding is given by

(r, ϕ) 7→ (r, ϕ, 2
√
rs(r − rs)).

The image of this embedding is known as Flamm’s paraboloid (despite not being
a paraboloid).

Figure 2: Flamm’s paraboloid. Radial distances in the Schwarzschild metric are
equal to radial distances along the “paraboloid”.

2.5 Radial Lightlike Geodesics

We would like to find a vector field in the (x0, r) plane that describes the tra-
jectories of light beams. Such a vector field will be of the form v = ue0 + e1 for
some scalar field u, and will satisfy g(v, v) = 0. Solving this equation:

u2g00 + g11 = 0

−u2
(
1− rs

r

)
+
(
1− rs

r

)−1

= 0

u2 =
(
1− rs

r

)−2

=

(
r

r − rs

)2

u = ± r

r − rs
.
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A lightlike curve γ in the (x0, r) plane must satisfy

γ′ = v = ± r

r − rs
e0 + e1. (1)

(For an ingoing light beam, the ± is −; for an outgoing light beam, the ± is +.)
If we think of γ as a function of r, we can integrate equation (1) to get

γ(r) = (±(r + rs log |r − rs|) + C, r)

where C is some constant.6 Plotted for various values of C, with x0 as the
vertical axis and r as the horizontal axis, the lightlike curves look like this:

Figure 3: Ingoing light beams are in green; outgoing light beams are in red.

Strangely, the ingoing light beams never actually cross the event horizon (in
this coordinate system), instead “slowing down” asymptotically. This does not
violate the constancy of the speed of light, because the t and r coordinates do
not accurately reflect proper time and distance when r is near rs.

Although we have thus far focused on the region where r > rs, we can also plot
lightlike curves in the region where r < rs.

At first glance, it may appear that the blue curves in Figure 4 are outgoing,
while the black curves are ingoing. But recall from Section 2.1 that r, not t, is
the timelike coordinate inside the event horizon. To interpret trajectories inside
the event horizon, we need to make a choice: should decreasing r mean moving
forward in time, or should increasing r mean moving forward in time? Under
the former convention, all lightlike and timelike trajectories are ingoing (in the

6log denotes the natural logarithm.

11



Figure 4: Lightlike curves inside and outside the event horizon.

sense that r decreases), and the spacetime is known as a “black hole”. Under
the latter convention, all lightlike and timelike trajectores are outgoing, and the
spacetime is known as a “white hole”. Nothing can escape from a black hole,
including light, hence the name. Conversely, nothing can stay inside of a white
hole. White holes are named such not because they necessarily appear white,
but simply because white is the opposite of black.

2.6 Crossing the Event Horizon

Although we noted earlier that nothing ever crosses the event horizon from the
perspective of an outside observer, things can cross the event horizon in finite
proper time. Consider, for instance, the timelike trajectory

γ(r) = (−2r − 2rs log(r − rs), r)

in the (x0, r) plane. We know this curve is timelike because it is one of the
ingoing lightlike curves from the previous section but with the time coordinate
scaled by a factor of 2. To calculate the proper time along γ between, say,
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r = 2rs and r = rs, we evaluate the integral

1

c

∫ 2rs

rs

√
−g(γ′(r)) dr =

1

c

∫ 2rs

rs

√
−g

(
−2rs
r − rs

e0 + e1

)
dr

=
1

c

∫ 2rs

rs

√
−
(

2rs
r − rs

)2

g00 − g11 dr

=
1

c

∫ 2rs

rs

√
4r2s − r2

r(r − rs)
dr

=
rs
c

∫ 2

1

√
4− u2

u(u− 1)
du

≈ 2.56
rs
c
.

Since this is finite, an object traveling along γ will cross the event horizon in
finite proper time, even while an outside observer sees it slow down and never
quite reach the event horizon.

At the moment, we cannot describe what happens to an object after it crosses
the event horizon, since the object’s t coordinate goes to infinity at r = rs. In
Section 2.8, we will define a coordinate transformation that joins up paths inside
the event horizon with paths on the outside.

2.7 Photon Sphere

Suppose that a light beam is traveling in circles around the center. The motion
of such a light beam is described by a curve γ(t) = (ct, r, π/2, kt), where r and
k are constants. Note that γ′(t) = ce0 + ke3, so for γ to be lightlike, we must
have c2g00 + k2g33 = 0, that is

−c2
(
1− rs

r

)
+ k2r2 = 0.

Solving for k, we find that

k =
c

r

√
1− rs

r
.

For γ to be a possible trajectory of a light beam in a vacuum, it must be a
geodesic in addition to being lightlike. The geodesic equation states that

d2xi

dt2
+
∑
j,k

Γi
jk

dxj

dt

dxk

dt
= 0.

In our case, all of the second derivatives are 0, and the only nonzero first deriva-
tives are dx0/dt = c and dx3/dt = k, so we only need to care about Christoffel
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symbols where both of the lower indices are 0 or 3. The only nonzero Christoffel
symbols of this form are

Γ1
00 =

rs(r − rs)

2r3
and Γ1

33 = rs − r.

Therefore, the only equation we need to check is that where i = 1, namely

rs(r − rs)

2r3
c2 + (rs − r)k2 = 0.

Substituting in the value of k we found earlier, we get a quadratic equation in
r with solution

r = rs or r =
3

2
rs.

The first solution, r = rs, does not correspond to a lightlike geodesic because g
is undefined at r = rs. However, the solution r = 3

2rs does. The sphere of radius
3
2rs is known as the photon sphere, because light can orbit around the center
at this radius. If you were at 3

2rs, you could look forward and see the back of
your head. However, this orbit is unstable in the sense that light at 3

2rs must
have no motion in the r direction in order to orbit forever; if r is decreasing at
all, the light will fall toward the event horizon, and if r is increasing at all, the
light will escape [4, § 6.2.4].

The photon sphere is an extreme case of the more general phenomenon of grav-
itational lensing, in which gravity causes light to deviate from a straight path
through space.

2.8 Kruskal-Szekeres Coordinates

I have hinted at an alternative coordinate system that allows the two regions r <
rs and r > rs to be united into a single Lorentzian manifold. One such coordinate
system is Kruskal-Szekeres coordinates, first described by Martin Kruskal and
George Szekeres in 1960. The idea behind Kruskal-Szekeres coordinates is to
replace x0 and r with two new coordinates such that radial light beams travel
along straight diagonal lines, rather than the curved lines seen in Figure 4.

To derive Kruskal-Szekeres coordinates, we begin by defining two coordinates
u and v such that u is constant along outgoing light beams and v is constant
along ingoing light beams. In the region where r < rs (which we will interpret as
a black hole, i.e. decreasing r means forward in time), the distinction between
outgoing and ingoing light beams is replaced by a distinction between light
beams that increase in x0 and light beams that decrease in x0.

Recall from Section 2.5 that radial lightlike curves are given by the formula

x0 ± (r + rs log |r − rs|) = C
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where C is some constant, and the ± is + for ingoing curves and − for outgoing
curves. We can modify this formula by replacing C with C ± rs log rs and then
incorporating the new term into the logarithm on the left, resulting in

x0 ±
(
r + rs log

∣∣∣∣ rrs − 1

∣∣∣∣) = C.

The purpose of this change is to make the quantity in parentheses, which we
shall denote r∗, approach 0 as r approaches 0. Without the shift, we would still
get a valid coordinate system in the end, but it would differ from the standard
Kruskal-Szekeres coordinates by a scale factor of

√
rs.

We define u and v as

u = x0 − r∗ v = x0 + r∗,

so that the coordinate lines are radial lightlike curves.

To compute eu and ev in terms of e0 and er, we will use the following facts:

x0 =
u+ v

2
r∗ =

−u+ v

2
dr∗

dr
=

r

r − rs

dr

dr∗
=

r − rs
r

= 1− rs
r
.

Now we can compute eu and ev (also denoted ∂/∂u and ∂/∂v) as follows:

∂

∂u
=

∂x0

∂u

∂

∂x0
+

∂r∗

∂u

dr

dr∗
∂

∂r
=

1

2

∂

∂x0
− 1

2

(
1− rs

r

) ∂

∂r
.

∂

∂v
=

∂x0

∂v

∂

∂x0
+

∂r∗

∂v

dr

dr∗
∂

∂r
=

1

2

∂

∂x0
+

1

2

(
1− rs

r

) ∂

∂r
.

Both of these vector fields are lightlike everywhere; eu points along ingoing light
beams, while ev points along out outgoing light beams.

Inside the event horizon, r∗ ranges from 0 to −∞. Therefore, u and v both
range from −∞ to ∞, but with the restriction that (−u+ v)/2 < 0, i.e. u > v.
Outside the event horizon, r∗ ranges from −∞ to ∞, so (u, v) can be any
pair of numbers. Note that it is possible for a point in the inner region and
a point in the outer region to be described by the same coordinates (u, v, θ, ϕ)
(as seen with points A and B in Figure 5), so although (u, v, θ, ϕ) constitutes a
coordinate system on the outer region, and also on the inner region, it cannot
cover both regions at once while remaining injective. Moreover, u and v are not
even defined at r = rs due to the logarithm in their definitions.
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Figure 5: Tangent vectors eu and ev at various points on the (x0, r) plane (with
r the horizontal axis and rs = 1).

To get rid of this logarithm, we define new coordinates7

U = sgn(rs − r) exp

(
−u

2rs

)
= sgn(rs − r) exp

(
−x0

2rs

)
exp

(
r

2rs

) ∣∣∣∣ rrs − 1

∣∣∣∣1/2
V = exp

(
v

2rs

)
= exp

(
x0

2rs

)
exp

(
r

2rs

) ∣∣∣∣ rrs − 1

∣∣∣∣1/2
with inverse transformation given by

u = −2rs log |U | v = 2rs log |V |.

The basis vectors eU and eV are parallel to eu and ev respectively, so they are
still lightlike. If we want light to travel along diagonal lines, then the last step

7sgn here is the sign function, which returns −1 for negative inputs and +1 for positive
inputs.
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is to define new coordinates

T =
U + V

2
=


sinh

(
x0

2rs

)
exp

(
r

2rs

)(
r

rs
− 1

)1/2

r > rs

cosh

(
x0

2rs

)
exp

(
r

2rs

)(
1− r

rs

)1/2

r < rs

X =
−U + V

2
=


cosh

(
x0

2rs

)
exp

(
r

2rs

)(
r

rs
− 1

)1/2

r > rs

sinh

(
x0

2rs

)
exp

(
r

2rs

)(
1− r

rs

)1/2

r < rs

with inverse transformation

U = T −X V = T +X.

In the outer region where r > rs, U is negative and V is positive, which is
equivalent to −X < T < X. In the inner region where r < rs, U and V are both
positive, or equivalently, −T < X < T . These two inequalities are mutually
exclusive, so unlike the (u, v, θ, ϕ) coordinate system, the (T,X, θ, ϕ) coordinate
system can cover both regions simultaneously. Moreover, the inequality u > v
which is satisfied at all points in the inner region translates to UV < 1, or
T 2 −X2 < 1. The domain of (T,X) is shown in Figure 6.

To write the Schwarzschild metric in Kruskal-Szekeres coordinates, we first note
that

dr2 =
(
1− rs

r

)2
dr∗2,

and therefore

g =
(
1− rs

r

)
(−dx2

0 + dr∗2) + r2dθ2 + r2(sin θ)2dϕ2. (2)

The next step is to write dx0 and dr∗ in terms of dT and dX. By composing
transformations given above, we find that

x0 = rs log

∣∣∣∣T +X

T −X

∣∣∣∣ r∗ = rs log
∣∣T 2 −X2

∣∣
and therefore

dx0 =
∂x0

∂T
dT +

∂x0

∂X
dX =

−2rsX

UV
dT +

2rsT

UV
dX.

dr∗ =
∂r∗

∂T
dT +

∂r∗

∂X
dX =

2rsT

UV
dT +

−2rsX

UV
dX.

We now compute

−dx2
0 + dr∗2 =

−4r2s
UV

(−dT 2 + dX2)
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Figure 6: The black hole and outer universe in Kruskal-Szekeres coordinates,
with T the vertical axis and X the horizontal axis.

and

UV = sgn(rs − r) exp

(
r∗

rs

)
=

(
1− r

rs

)
exp

(
r

rs

)
. (3)

Substituting these formulas into equation (2), we get

g =
4r2s
r

exp

(
−r

rs

)
(−dT 2 + dX2) + r2dθ2 + r2(sin θ)2dϕ2.

Note that there is no longer any singularity at r = rs; the metric remains well-
defined and nondegenerate. Note also that T is timelike everywhere, while X is
spacelike everywhere.

Although this is the formula typically given for the Schwarzschild metric in
Kruskal-Szekeres coordinates, it is not fully in Kruskal-Szekeres coordinates due
to the appearance of r in the coefficients. We have already written x0 and r∗ in
terms of T and X, but have not yet written r in terms of T and X. To do this,
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we can solve equation (3) using the Lambert W function,8 resulting in

r = rs

(
1 +W

(
−UV

e

))
= rs

(
1 +W

(
X2 − T 2

e

))
.

2.9 Maximal Extension, Black Hole and White Hole

If we view the Kruskal-Szekeres form of the Schwarzschild metric on its own
terms, there is no reason why it must be restricted to the region T +X > 0, as
in Figure 6. The only necessary restriction placed on T and X is the inequality
T 2 − X2 < 1 arising from the use of the Lambert W function, which is only
defined for numbers greater than −1/e.

If we extend the Kruskal-Szekeres Schwarzschild metric as far as possible, we
get the spacetime with 4 regions shown in Figure 7. It is easy to see that
the functions (T,X, θ, ϕ) 7→ (T,−X, θ, ϕ) and (T,X, θ, ϕ) 7→ (−T,X, θ, ϕ) are
isometries, since T and X (and their differentials) only appear squared in the
definitions of g and r. So region III is isometric to region I, and region IV is
isometric to region II. However, if we care about the orientation of time, then
regions II and IV are distinct, since the isometry that relates them reverses time.
Specifically, whereas region II is a black hole, region IV is a white hole, under
the usual convention of increasing T meaning forward in time. So, whereas the
original coordinates contain an ambiguous region that is either a black hole or
a white hole, as seen in Section 2.5, Kruskal-Szekeres coordinates contain both
a black hole and a white hole.

As we showed in the previous section, light beams travel along diagonal lines in
the (T,X) plane, just as in the Minkowski diagrams of special relativity. Objects
traveling slower than c have worldlines that are more vertical than horizontal.
Assuming nothing can travel faster than c, it is impossible to travel out of region
II or into region IV, or to travel between regions I and III. Everything in region
II eventually hits the singularity at T =

√
1 +X2, while everything in region

IV originated from the singularity at T = −
√
1 +X2.

Region III is a “parallel universe” isometric to but causally disconnected from
region 1. While it is impossible to travel between regions I and III, an object
from region I could travel into the black hole and encounter an object that
originated from region III.

The existence of region III is already hinted at in the original coordinate system.
If we interpret the left side of Figure 4 as a black hole, then the blue curves rep-
resent light beams that originated from region I, while the black curves represent
light beams that originated from region III.

Kruskal-Szekeres coordinates are not the only alternative coordinate system for
the Schwarzschild universe. Earlier coordinate systems, such as Lemâıtre coordi-
nates and Eddington-Finkelstein coordinates, demonstrated that the coordinate

8W is the inverse of the restriction of x 7→ xex to numbers greater than -1, and is a strictly
increasing function from (−1/e,∞) onto (−1,∞).
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Figure 7: Maximal extension of the Schwarzschild metric in Kruskal-Szekeres
coordinates, along with lines of constant t and r. In this image, rs = 1 and
natural units are used, so x0 is identified with t [SOURCE].

singularity at r = rs is not a physical singularity while still only covering two of
the four spacetime regions.

For a long time after the Schwarzschild metric was discovered, both black holes
and white holes were widely thought not to exist. Although it was known that an
object could collapse into a black hole if it were dense enough, many physicists
(including Einstein) predicted that various forces would prevent this density
from being reached. However, it is now believed that black holes do form after
the collapse of large stars, and astronomers have identified many objects that are
best explained as black holes. White holes, on the other hand, are thought not to
exist, as unlike the maximally extended Schwarzschild spacetime, the spacetime
of collapsing star contains only a black hole, not a white hole. Likewise, parallel
universes like the region III described above are also predicted not to exist.
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2.10 Graviational Singularity

A (pseudo-)Riemannian manifold is said to be non-singular if the domain of
any geodesic can be extended to all of R. If this is not the case, the manifold
is singular, and is said to have a “singularity” wherever geodesics fail to ad-
mit extensions. These “singularities” are not actually points on the manifold,
but they may have coordinates in some coordinate systems. For example, the
Schwarzschild metric has a singularity at r = 0 in radial coordinates, and at
T 2 −X2 = 1 in Kruskal-Szekeres coordinates.

Of particular interest in general relativity are timelike singularities (failures of
timelike geodesics to be extended), and those singularities that cannot be re-
solved by embedding the manifold into a larger one (often accomplished via
a change of coordinates, as is the case with the singularity at r = rs in the
Schwarzschild metric). These “gravitational singularities” are important be-
cause they constitute failures of general relativity to make predictions. Nothing
can be said about what happens to an object after it reaches a singularity,
because the manifold of spacetime ends there.

Although the singularity at r = 0 in the Schwarzschild metric is often said to
lie in the “center” of a black hole, this is misleading, because inside the event
horizon, r is a time coordinate, not a spatial coordinate. So the singularity is
better understood as a boundary where time ends.

Understanding what happens at and near gravitational singularities is a goal
of modern theoretical physics. Many physicists believe that singularities do
not actually exist in our universe, and that the long-sought quantum theory of
gravity will not contain singularities.

2.11 Gravitational Redshift

Recall that the exterior derivative of a 1-form is defined in coordinates as

d

(∑
i

fi dxi

)
=
∑
i,j

∂fi
∂xj

dxj ∧ dxi.

In general relativity, a wave can be represented as a 1-form whose exterior
derivative is 0. The frequency of the wave as measured by an observer is found
by evaluating the 1-form on that observer’s 4-velocity vector. In particular, an
observer moving along with a wave measures its frequency to be 0, so the 1-
form evaluates to 0 on any multiple of such an observer’s 4-velocity. For a wave
propagating at a speed of c, then, the wave’s 1-form should vanish on lightlike
vectors in the direction the wave is propagating in. Using this condition, and the
formula for radial lightlike vectors derived in Section 2.5 (namely equation (1))
we can begin to derive a formula for the 1-form corresponding to a radial light
wave:

ω = α(r)

(
dx0 ±

r

r − rs
dr

)
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where α is some function, and the ± is + for an ingoing light wave and − for
an outgoing light wave. The function α can be found using the condition that
d(ω) = 0. Using the formula for ω above, we have

d(ω) =
dα

dr
dr ∧ dx0,

which is zero only when α is constant. This leaves one degree of freedom in
the description of radial light waves (namely the constant value of α) which is
proportional to the frequency of the light.

Recall that an observer with constant r coordinate has a 4-velocity of

v(r) =
c√

1− rs
r

e0.

This observer will measure the light wave described by ω to have a frequency of

f(r) = ω(v(r)) =
cα√
1− rs

r

.

As r increases, f(r) approaches cα. Thus α has a physical interpretation as
the wave number (number of wavelengths per unit distance) of the light wave
as measured by an observer at infinity. However, for all finite values of r, f(r)
is greater than cα, and it is especially high (approaching ∞) for r close to rs.
Therefore, a yellow light source close to a black hole may appear blue to an
observer even closer to the black hole, and red to an observer farther out. In
fact, the light emitted by any star in our universe is slightly redshifted on its
way outward.

3 The FLRW Spacetime

While the Schwarzschild metric (and the more general Kerr metric, which de-
scribes space around a rotating mass) can be useful for modeling small9 objects
in our universe, the FLRW metric models our universe at the largest scales.
Named after its early investigators Alexander Friedmann, Georges Lemâıtre,
Howard Robinson, and Arthur Walker, it describes an expanding or contracting
universe with positive, zero, or negative spatial curvature.

9From a cosmological point of view.
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3.1 Derivation

The most commonly encountered parametrization of the 3-sphere as a subset of
4-dimensional Euclidean space is as follows:

x1 = cosχ

x2 = sinχ cos θ

x3 = sinχ sin θ cosϕ

x4 = sinχ sin θ sinϕ.

The coordinates χ and θ range from 0 to π, while ϕ is 2π-periodic. The corre-
sponding basis vectors are defined by

∂

∂χ
=
∑
i

∂xi

∂χ

∂

∂xi
,

and likewise for θ and ϕ. By computing the dot products of these basis vectors,
one arrives at an expression for the pullback of the Euclidean metric onto the
3-sphere:

dχ2 + (sinχ)2 dθ2 + (sinχ)2(sin θ)2 dϕ2.

The resulting Riemannian manifold (which we will henceforth regard as a man-
ifold in its own right, and not as a subset of 4-dimensional space) has constant
positive Ricci scalar curvature. To obtain a manifold with constant negative
curvature, we consider the hypersurface

H = {(x1, x2, x3, x4) ∈ R4 | x2
1 − x2

2 − x2
3 − x2

4 = 1 and x1 > 0}

and pull back not the Euclidean metric, but rather the (−,+,+,+) Minkowski
metric. H can be parametrized as follows:

x1 = coshχ

x2 = sinhχ cos θ

x3 = sinhχ sin θ cosϕ

x4 = sinhχ sin θ sinϕ,

with χ now ranging from 0 to ∞. The components of the pullback metric are
the results of evaluating the Minkowski metric on each pair of tangent vectors:

dχ2 + (sinhχ)2 dθ2 + (sinhχ)2(sin θ)2 dϕ2.

Note that the two metrics we have obtained are identical except for the alterna-
tion of sinχ with sinhχ. This motivates the introduction of a new coordinate,
r, defined as sinχ in the positive-curvature case and sinhχ in the negative-
curvature case. It is straightforward to obtain an expression for dχ in terms of
r and dr:

χ = sin−1 r χ = sinh−1 r

dχ =
1√

1− r2
dr dχ =

1√
1 + r2

dr

23



This coordinate change allows us to write both metrics in the same form:

Σ =
1

1− kr2
dr2 + r2 dθ2 + r2(sin θ)2 dϕ2.

If k = +1, we obtain the positive-curvature metric, and if k = −1, we obtain
the negative-curvature metric. Moreover, setting k to 0 results in the Euclidean
(zero-curvature) metric in standard spherical coordinates. Note that the coordi-
nate r ranges from 0 to 1 in the positive-curvature case, and from 0 to ∞ in the
other two cases. Also note that this coordinate system, in the positive-curvature
case, only covers half of the 3-sphere due to the sine function (which we used to
define r) being non-injective on [0, π].

To get the FLRW metric, we add a time coordinate x0 = ct and scale the spatial
part of the metric by a time-varying factor a(t):

g = −dx2
0 +

a(t)2

1− kr2
dr2 + a(t)2r2 dθ2 + a(t)2r2(sin θ)2 dϕ2

= −dx2
0 + a(t)2 Σ.

When a(t) increases, spacelike vectors such as er become longer — that is, the
same change in r constitutes a greater proper distance — and the universe is said
to be expanding. When a(t) decreases, spacelike vectors become shorter, and
the universe is said to be contracting. This terminology is justified by the fact
that paths of constant r, θ, and ϕ are geodesics,10 so that test particles tend to
get farther apart in an expanding universe, and closer together in a contracting
universe. An object with constant r, θ, and ϕ is said to be “comoving,” and the
coordinate system we are using is known as “comoving coordinates.”

Note that the r coordinate is dimensionless, while a(t) has units of distance. If
k = 1, then a(t) is the radius of the 3-spherical universe at time t (because we
began with a unit 3-sphere and then scaled it by a(t)). Similarly, if k = −1, then
a(t) is radius of curvature of the hyperbolic universe. However, if k = 0, then
the value of a(t) at some fixed time t has no physical meaning; it is only changes
in a(t) that matter. This is seen in the fact that replacing a(t) with Ba(t) and
r with r/B, where B is any positive constant, leaves the metric unchanged.11

The Ricci scalar curvature of the spatial slice at time t is 6ka(t)−2. This affirms
the claims made earlier about the sign and constancy of the spatial curvature,
and demonstrates the important fact that curvature is inversely proportional to
the square of the scaling factor.

3.2 Friedmann Equations

Unlike the Schwarzschild metric, the FLRW metric does not satisfy the Einstein
vacuum equation, outside of a few specific choices of k and a. The Ricci tensor

10The Christoffel symbols Γi
00 are all 0.

11This is not the case if k ̸= 0 due to the kr2.
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and scalar of the FLRW metric are

Ric =
−3ä

c2a
dx2

0 +
2kc2 + 2ȧ2 + aä

c2
Σ

R =
6kc2 + 6ȧ2 + 6aä

c2a2
.

Using the Einstein field equation, the covariant stress-energy tensor can be
computed:

T =
c4

8πG

(
Ric− 1

2
Rg + Λg

)
= −Λc4a2 − 3kc4 − 3c2ȧ2

8πGa2
dx2

0 +
Λc4a2 − kc4 − c2ȧ2 − 2c2aä

8πG
Σ. (4)

This turns out to be the stress-energy tensor of a comoving “perfect fluid”; that
is, a fluid with no shear stresses or viscosity, characterized entirely by its density
ρ and its pressure q,12 which may vary over time but not over space. Specifically,
the covariant stress-energy tensor of a perfect fluid is

T =
(
ρ+

q

c2

)
U ⊗ U + qg,

where U is the covariant 4-velocity of the fluid, derived from its (contravariant)
4-velocity by contraction with g. If the fluid is comoving, then its 4-velocity is
u = ce0 and its covariant 4-velocity is g(u,−) = −c dx0. So the stress-energy
tensor is

T = (ρc2 + q) dx2
0 + qg = ρc2 dx2

0 + qa2 Σ. (5)

At this point, we have two expressions for the stress-energy tensor: equation (4),
derived from the curvature of spacetime via the Einstein field equation, and
equation (5), derived from the density and pressure. Equating these expressions
will yield two equations — the Friedmann equations — which relate the density
and pressure of the universe to its curvature, cosmological constant, and rate of
expansion. The first Friedmann equation results from taking the dx2

0 component
of each expression:

−Λc4a2 − 3kc4 − 3c2ȧ2

8πGa2
= ρc2.

This equation attains a more commonly-cited form after some algebraic manip-
ulation:

ȧ2

a2
=

8πGρ

3
+

Λc2

3
− kc2

a2
. (6)

The second Friedmann equation results from contracting each expression against
the contravariant metric g−1 = −e20 + a−2Σ−1. For a tensor expressed as a

12It is usual to represent pressure with the symbol p, but I will use q to avoid confusion
with the similar-looking letter ρ.
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linear combination of dx2
0 and Σ, say fdx2

0 + hΣ, this results in the scalar field
−f + 3a−2h. Applying this to the expressions in (4) and (5) gives

2Λc4a2 − 3kc4 − 3c2ȧ2 − 3c2aä

4πGa2
= −ρc2 + 3q,

which after some algebraic manipulation becomes

ä

a
+

ȧ2 + kc2

a2
=

2Λc2

3
+

4πG

3

(
ρ− 3q

c2

)
.

The second term on the left hand side matches two terms of the first Friedmann
equation (6). Applying that equation yields

ä

a
+

8πGρ

3
+

Λc2

3
=

2Λc2

3
+

4πG

3

(
ρ− 3q

c2

)
,

which, after some more algebraic manipulation, results in the second Friedmann
equation:

ä

a
=

Λc2

3
− 4πG

3

(
ρ+

3q

c2

)
. (7)

The first Friedmann equation relates ȧ (the rate of expansion of the universe)
to k, Λ and ρ, while the second relates ä (the acceleration of the universe’s
expansion) to Λ, ρ, and q.

3.3 Change in Density

The relationship between the two Friedmann equations deserves some clarifica-
tion. The first involves ȧ and the second involves ä, but the second equation
is not simply the derivative of the first equation. It is natural, then, to ask
what restrictions must hold for both equations to be true. It turns out that,
if we take the derivative of the first Friedmann equation and compare it with
the second Friedmann equation, we get an equation for ρ̇, the rate of change of
mass-energy density.

The exact derivation is as follows: we first multiply both sides of (6) by a2 to
isolate the ȧ2, resulting in

ȧ2 =
8πGρa2

3
+

Λc2a2

3
− kc2.

We then take the derivative of both sides and solve for ä
a :

ä

a
=

4πGρ̇a

3ȧ
+

8πGρ

3
+

Λc2

3
. (8)

Equating the right hand side of (8) with that of (7) and solving for ρ̇, we get

ρ̇ = −3
ȧ

a

(
ρ+

q

c2

)
. (9)
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One consequence of this equation is that, if ρ > 0 (and q ≥ 0), then ρ̇ and ȧ have
opposite signs; the density decreases as the universe expands, and increases as
the universe contracts.

We can integrate equation (9) if we assume that q = wc2ρ for some proportion-
ality constant w. For a universe filled with “dust-like” matter that exerts no
pressure, w = 0; for a universe filled with electromagnetic radiation, w = 1

3 .
13

With this assumption, equation (9) becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
.

Integrating both sides with respect to t results in

log(ρ) = −3(1 + w) log(a) + C,

which we can solve for ρ to get

ρ = Da−3(1+w). (10)

(Here, D = exp(C) is some constant resulting from the integration.)

In the case of dust-like matter, equation (10) states that ρ = Da−3. This makes
sense, because if one imagines the universe as a cloud of dust particles, then
the distance between any two particles should be proportional to a, making the
average number of particles per unit volume proportional to a−3. In the case of
radiation, however, equation (10) becomes ρ = Da−4. The additional factor of
a−1 is due to the fact that, as the universe expands, photons are redshifted in
addition to growing farther apart, and the energy of a photon is proportional
to its frequency.

For a hypothetical substance with w = −1, and thus with negative pressure
equal to −c2ρ, equation (9) becomes ρ̇ = 0 and equation (10) becomes ρ = D.
In other words, the density of such a substance does not change over time. In
Section 3.7, we will see that the cosmological constant Λ has the same effect
as such a substance, meaning one can incorporate Λ into ρ and q, increasing
the density and decreasing the pressure if Λ is positive, and the reverse if Λ is
negative. However, for the sake of classifying FLRW universes, I will treat Λ as
a separate parameter, and will assume that ρ, q ≥ 0.

3.4 Universes with Λ < 0

If Λ < 0, then the right side of the second Friedmann equation (7) is always
negative, so ä is always negative, meaning ȧ is always decreasing. In fact, ȧ
necessarily decreases below 0, as opposed to approaching some limiting value.

13This can be derived from the fact that the stress-energy tensor of an electromagnetic field
always has zero trace.
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To prove this, we choose a positive constant a1 such that a > a1 at some time.
Then the second Friedmann equation gives

ä ≤ Λc2a

3
<

Λc2a1
3

.

Therefore, as long as a is greater than a1, ä is bounded above by a negative
constant, so ȧ decreases at a rate that is at least linear. Something decreasing
at such a rate must eventually become negative, and the condition a > a1 can
only cease to hold if ȧ has become negative.

Since ȧ is eventually negative and never increases, a is bound to reach 0, causing
the universe to end in a singularity — a “big crunch”.

If the universe is empty (that is, ρ = q = 0), then k must be −1; if not, the
right hand side of the first Friedmann equation (6) would be negative, and
(ȧ/a)2 cannot be negative. Such a universe (an empty universe with negative
cosmological constant and thus negative spatial curvature) is known as anti-De
Sitter space. In anti-De Sitter space, the first Friedmann equation states that

ȧ2 = c2 +
Λc2

3
a2. (11)

This differential equation is solvable. Since the function y(t) = sin(t) satisfies
ẏ2 = 1− y2, one might expect the solution to (11) to be some kind of sinusoid.
Indeed, the solution is

a(t) =

√
−3

Λ
sin

(
t

√
−Λc2

3
+ C

)
.

So, over the course of the universe, the distance between two comoving test
particles in anti-De Sitter space increases and then decreases sinusoidally.

3.5 Universes with Λ = 0

If Λ = 0, the fate of the universe depends on its curvature. The first Friedmann
equation (6) can be written as

ȧ2 =
8πGρa2

3
− kc2. (12)

If k = −1, then, since the first term on the right is always nonnegative, we
find that |ȧ| ≥ c. So the universe either begins in a singularity and expands
without bound, or constantly contracts before ending in a “big crunch”. (The
latter is simply the time-reversal of the former.) In the expanding case, ρa2 will
approach 0, so ȧ approaches the constant c as t increases.

If k = 0, then either the universe is empty and a is constant (this is just the
familiar Minkowski space), or ρ > 0 and ȧ is never zero. In the latter case,
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the universe must either be always expanding or always contracting. Focusing
again on the expanding case, we can rewrite equation (12) as

ȧ =

√
8πGρa2

3
.

To determine the asymptotic behavior of a, we consider the two extremes where
the universe is entirely full of matter or entirely full of radiation. In these
situations, the equation becomes

ȧ = Pad,

where P is some constant and d is −0.5 for matter or −1 for radiation. The
solution to this separable differential equation is

a(t) = (P (1− d)(t+ C))
1

1−d .

In other words, a is proportional to either t2/3 or t1/2, after shifting the time
scale by some constant C. So the universe expands without bound, but at a
rate that approaches 0, as opposed to the c we saw in the k = −1 case.

If k = 1, then the universe must contain matter; otherwise, equation (12) would
give a negative value for ȧ2. More precisely, ρa2 must be at least 3c2/8πG. The
dynamics prevent this inequality from being violated: if ρa2 is ever equal to this
critical value, then ȧ = 0; by the second Friedmann equation (7), ä is negative,
so ȧ will become negative, causing a to decrease and ρa2 to increase. In fact,
the universe is destined for a big crunch after this point, because ȧ can never
increase again.

If the universe is initially expanding, then ρa2 must eventually reach the critical
value. The only other possibility would be for a to approach some limit without
ever reaching it, but then ä would approach 0 without ρ approaching 0, violat-
ing the second Friedmann equation. So the universe always expands until ρa2

reaches the critical value, then begins to contract, before finally ending in a big
crunch.

In this section, we have seen that an FLRW universe with zero cosmological
constant cannot be static, unless it is the empty Minkowski space. This fact is
what led Einstein to introduce the cosmological constant in the first place. At
the time, it was not known that our universe is expanding, and the cosmologi-
cal constant was a way of recovering a static universe from general relativity.14

After work by Edwin Hubble convinced many (including Einstein) that the uni-
verse is expanding, it appeared that the cosmological constant was a mistake,
and that the non-static universe predicted by Einstein’s original equations was
an advantage of general relativity rather than a problem to be solved. It was
discovered much later (in 1998) that the expansion of the universe is acceler-
ating, which, as we have seen, is not possible with zero cosmological constant.

14The static universe proposed by Einstein, with positive cosmological constant, will appear
in the next section.
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This led to the reintroduction of the cosmological constant, with a small but
positive value.

3.6 Universes with Λ > 0

If Λ > 0 and k ̸= 1, then, according to the first Friedmann equation (6),

|ȧ| ≥ a

√
Λc2

3
.

In the expanding case, we find that ȧ is greater than some minimum value that
does not decrease. It follows that the universe expands without bound. As it
does so, ρ and k/a2 both approach 0. So the right hand side of the Friedmann
equation is eventually dominated by the Λ term, giving us

ȧ ≈ a

√
Λc2

3
, (13)

which integrates to

a(t) = C exp

(
t

√
Λc2

3

)
.

So, even if the universe does not expand exponentially at first, it will eventually
expand exponentially once ρ and k/a2 become negligible. (In the flat and empty
case ρ, k = 0, the equation above is exact for all time. This solution is known
as De Sitter space.)

If k = 1, then the situation is somewhat different, as the first Friedmann equa-
tion contains both positive and negative terms. Explicitly, the equation is

ȧ2 =
8πG

3
ρa2 +

Λc2

3
a2 − c2. (14)

There is nothing preventing the right hand side of this equation from being 0 at
some point in time. In fact, as Einstein discovered, it is possible to make a, ρ,
and q constant by finely tuning the parameters. If we set the right hand sides
of equations (14) and (7) to 0 (making ȧ and ä both 0) and write q = wc2ρ for
some constant w, we can solve for Λ and ρ to obtain

Λ =
3w + 1

w + 1
a−2 ρ =

c2

4πG(w + 1)
a−2.

(Special cases are w = 0 for a static universe full of dust-like matter, and
w = 1/3 for a static universe full of radiation.) Note that if a (the radius of the
3-spherical universe) is higher, the values of Λ and ρ necessary to maintain a
static universe are lower, decreasing proportionally to a−2.

However, Einstein’s static universe is a very special case. Other universes with
Λ > 0 and k = 1 tend to either collapse in a singularity (as in the Λ ≤ 0, k = 1
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case) or expand exponentially (as in the Λ > 0, k ̸= 1 case). If we make the
simplifying assumption that q = 0, then

ρ =
M

2π2
a−3

for some constant M . (I chose to add a factor of 2π2 because it makes the total
mass of the universe equal to M . Since the volume of a 3-sphere with radius a
is 2π2a3, the total mass is 2π2a3ρ = M .) With this substitution, equation (14)
becomes

ȧ = ±
√

4GM

3π
a−1 +

Λc2

3
a2 − c2,

which is a time-independent ordinary differential equation. Writing

P (a) =
4GM

3π
+

Λc2

3
a3 − c2a,

we know that ȧ is nonzero when P (a) is positive, zero when P (a) is zero, and
undefined when P (a) is negative (i.e. such universes cannot exist). Note that
P is a cubic polynomial with P (0) ≥ 0 (equalling 0 only when the universe is
empty), P ′(0) < 0, and P (a) → ∞ as a → ∞. P thus has exactly one local
minimum, at am > 0, and the sign of P (am) is of great importance to the
dynamics of the universe. By setting P ′ = 0 one finds

am =
1√
Λ

P (am) =
4GM

3π
− 2c2

3
√
Λ

the condition P (am) = 0 can be rewritten in the dimensionless form

2GM
√
Λ

πc2
= 1.

So, defining f(M,Λ) to be the value on the left, there are four possibilities:

• f(M,Λ) > 1. In this case, P (a) is positive for all a ≥ 0 and the universe
expands without bound. Eventually, the curvature will be negligible and
the expansion will be exponential as in the k ̸= 1 case. (Of course, the
time-reversed version, with the universe ending in a singularity, is also
mathematically possible.)

• 0 < f(M,Λ) < 1. In this case, P (a) has two positive roots, and there are
two possibilites: a is always less than or equal to the lower root, in which
case the universe begins in a big bang, reaches the lower root, and then
ends in a big crunch, or a is always greater than or equal to the higher
root, in which case the universe contracts, ”bounces” at the higher root,
and then expands without bound. Note that a cannot approach one of the
roots without ever reaching it, or reach it and then stay there, because by
the second Friedmann equation, ä is only 0 at a single value of a, which
lies in the unreachable region strictly between the two roots.
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• M = 0 and thus f(M,Λ) = 0. This case is similar to the previous one,
except that the lower root of P is at a = 0, so the big bang-big crunch
scenario is impossible, leaving only the bouncing scenario. Since ρ = 0,
equation (14) can actually be integrated to find that a(t) is a scaled and
shifted cosh function. This universe — as well as its analogue with k = −1,
in which a(t) is a sinh function— is actually isometric to the De Sitter
space with the same cosmological constant [6, § IX.10]. In other words, for
a fixed positive cosmological constant, the empty FLRW universes with
k = −1, k = 0, and k = +1 are just different coordinate systems on the
same spacetime. Since the De Sitter universe is empty, there is natural
notion of whether something is “comoving” and thus no single comoving
coordinate system.

• f(M,Λ) = 1. In this case, P (a) has a single root at a = Λ−1/2. a can
stay at this root for all time, resulting in the Einstein static universe. To
understand the behavior for other initial values of a, we can linearize the
differential equation

ȧ = ±
√

P (a)

a
= ±

√
2c2Λ−1/2

3
a−1 +

c2Λ

3
a2 − c2

at the root a = Λ−1/2. By applying L’Hopital’s rule twice, we find that

lim
a→Λ−1/2

(
d

da

√
P (a)

a

)2

= c2Λ,

so the linearization is

ȧ = ±cΛ1/2(a− Λ−1/2),

with solution
a(t) = Λ−1/2 + C exp

(
±cΛ1/2t

)
.

So the universe approaches Einstein’s static universe (either as t → −∞
or as t → +∞) at an approximately exponential rate. Essentially, there
are four possibilities: the universe can begin in a big bang and approach
Einstein’s universe, begin arbitrary close to Einstein’s universe and then
contract, ending in a big crunch, contract forever while approaching Ein-
stein’s universe, or begin arbitrarily close to Einstein’s universe and then
expand without bound. The last of these was proposed by Eddington,
early in the history of expanding-universe theories, as a model for our
own universe [2].

Although I have been assuming that q = 0, the case of a Λ > 0, k = 1 universe
full of radiation (w = 1

3 ) can be analyzed in much the same way. The primary
difference is that the mass of the universe is no longer constant; you can instead
use a constant equal to the mass times a.
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Figure 8: Summary of 3-spherical FLRW universes with q = 0. The horizontal
axis is the constant mass M of the universe, and the vertical axis is the cos-
mological constant Λ. Universes with M = 0,Λ ≤ 0 are invalid. The small
color-coded graphs show how the radius a(t) changes over time; the expanding
universes in the purple and black regions have contracting analogues that are
not shown.
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Figure 9: Summary of big bang models.
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3.7 Redundance of Λ

Recall the Einstein field equation:

Ric− 1

2
Rg + Λg =

8πG

c4
T.

This can be rewritten as

Ric− 1

2
Rg =

8πG

c4

(
T − Λc4

8πG
g

)
.

In other words, adding a cosmological constant is equivalent to adjusting the
stress-energy tensor by a term proportional to g. For an FLRW universe, where
the stress-energy tensor is given by equation (5), this means replacing ρ with

ρ+
Λc2

8πG

and q with

q − Λc4

8πG
.

Indeed, it is easy to check that performing this substitution while removing the
separate Λ terms preserves the Friedmann equations. So Λ can be treated either
as a parameter separate from ρ and q, or as a substance which contributes to ρ
and q and whose pressure is the negative of its energy density.

Interestingly, spatial curvature has the same effect on the expansion of the
universe as a hypothetical substance with w = − 1

3 (that is, q = − 1
3c

2ρ) and
whose density is therefore proportional to a−2. Specifically, adding a term to ρ
equal to

−3kc2

8πGa2

and a term to q equal to
kc4

8πGa2
,

while removing the separate k term in the first Friedmann equation, leaves
the Friedmann equations unchanged. This means that spatial curvature can
be said to have an “equivalent density” and an “equivalent pressure”, with
positive curvature having negative equivalent density. Curvature is physically
distinguishable from its equivalent substance, however, as it appears in the
metric tensor g.

3.8 Our Universe

Observations indicate that the universe is expanding at an accelerating rate
(that is, ä > 0), which suggests a positive cosmological constant: a universe
with Λ ≤ 0 and ρ, q ≥ 0 cannot exhibit accelerating expansion by the second

35



Friedmann equation (7). The results of Section 3.6 suggest that the universe will
continue to expand forever at a rate that is asymptotically exponential, a fate
known as the “Big Freeze”. The estimated value for Λ, based on estimates of ä
as well as the universe’s density, is on the order of Λ = 10−52m−2. Since Λ can
be viewed as contributing a density and pressure (Section 3.7), we can compare
its density to that of ordinary matter. Currently, about 70% of the universe’s
total density comes from Λ, with only 30% coming from matter with q ≥ 0.
The vast majority of this 30% is non-relativistic matter with q ≈ 0; only a tiny
proportion is radiation. However, since the density of ordinary matter decreases
as the universe expands while Λ does not, these proportions were different in
the past. For the first 50,000 years or so of the universe’s existence, radiation
dominated, and for a period of billions of years after that, non-relativistic matter
dominated. Around 4 billion years ago (or 10 billion years after the Big Bang),
the density contributed by Λ reached 1/3 of the total, causing the universe’s
expansion to stop decelerating and begin to accelerate.

The acceleration of the universe’s expansion can be explained by factors other
than a cosmological constant. Recalling that Λ can be viewed as a substance
with w = −1, we can also imagine substances with w close to −1 or with a
w that changes over time, being close to −1 in the present day but greater
in the past. Such models are known as “quintessence”, and are not included
in the classification in sections 3.4–3.6, in which it was assumed that ρ, q ≥ 0
(with Λ treated as a separate parameter). Note that if w < −1/3, quintessence
contributes to acceleration, while if w > −1/3, it contributes to deceleration.
In general, a substance that causes the expansion of the universe to accelerate
is known as “dark energy”, with Λ and the more general quintessence model
being two types of dark energy.

Some cosmologists have argued that dark energy does not exist at all, and that
the inhomogeneity of the universe — which is ignored in the FLRW model —
is large enough to create the appearance of expansion acceleration when there
is none. The “timescape cosmology” proposed by David Wiltshire takes into
account general-relativistic time dilation, with time passing slower in galaxies
than in cosmic voids (supposedly as much as 35% slower) [5].

Nevertheless, the most widely-accepted cosmological model (as of 2025) is the
“Λ-CDM” model, which includes a positive cosmological constant as described
at the beginning of this section.

As for the curvature type k, measurements are consistent with the universe being
perfectly flat (k = 0). Of course, it could be the case that k = ±1 with a very
large, since any Riemannian manifold appears arbitrarily flat at small scales.
A value of k = 0 (or k = −1) would seem to suggest that the universe is of
infinite volume, with spatial slices homeomorphic to R3, but this is not actually
required, as other 3-dimensional topologies (including some compact ones) can
be given a flat metric. For example, the universe could be a 3-torus, repeating
periodically in three independent directions. But this is purely speculative,
and in the absence of any evidence to the contrary, it is simplest to model the
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universe as infinite. (Contrary to popular perception, the Big Bang does not
imply that the universe is finite.)

If we assume that k = 0 and q = 0— the latter of which is a fine approximation
for most of the universe’s history — then the first Friedmann equation (6) can
actually be integrated to get a closed-form expression for the scale factor of
the universe as a function of time. (This fact was pointed out to me by Dr.
Williams.) Writing ρ = Da−3 for some constant D, we get

da

dt
=

√
8πGD

3
a−1 +

c2Λ

3
a2.

Separating and integrating:

t =

∫ (
8πGD

3
a−1 +

c2Λ

3
a2
)−1/2

da =

∫ (
8πGD

3
+

c2Λ

3
a3
)−1/2

a1/2 da.

We can get rid of the a1/2 by substituting u = a3/2, so that a1/2 da = 2
3 du.

The result is

t =
2

3

∫ (
8πGD

3
+

c2Λ

3
u2

)−1/2

du =
1√

6πGD

∫ (
1 +

c2Λ

8πGD
u2

)−1/2

du.

Recalling that the derivative of sinh−1(u) is (1 + u2)−1/2, we can write the
integral as

t =
1√

6πGD

√
8πGD

c2Λ
sinh−1

(
u

√
c2Λ

8πGD

)

=
2√
3c2Λ

sinh−1

(
a3/2

√
c2Λ

8πGD

)
.

(I am leaving out the constant of integration, because it is not needed if we use
the convention that t = 0 is the time when a = 0.) Solving for a, we get

a(t) =

(
8πGD

c2Λ

)1/3

sinh

(
t

√
3c2Λ

2

)2/3

. (15)

Essentially, the universe grows something like sinh(t)2/3.15 If we’d like, we can
write D = ρ0a

3
0, where ρ0 and a0 are the universe’s present density and scale

factor respectively.16 Then equation (15) becomes

a(t)

a0
=

(
8πGρ0
c2Λ

)1/3

sinh

(
t

√
3c2Λ

2

)2/3

,

which gives the scale factor of the universe at any time t (with t = 0 being the
big bang) relative to that at the present time.

15In the early period of radiation dominance, it is more like t1/2, by the results of Section 3.5.
16ρ0 is approximately 2.7× 10−27 kgm−3, most of which is contributed by invisible “dark

matter.”
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