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Abstract

Modules over rings are some of the most well-studied structures in
algebra. By slightly weakening the definition of a module—removing the
requirement of an additive identity and additive inverses—one obtains
the notion of a semimodule. The structure theorem for semimodules over
rings, proven in this paper, states that there is a correspondence between
semimodules over a commutative ring R and functors F : X → RMod,
where X is some semilattice. (I call such functors “nets of R-modules”;
sheaves of R-modules on a topological space are a special case.) Specif-
ically, there is an equivalence of categories between the category of R-
semimodules and the category of nets of R-modules.

1 From semimodules to nets of modules

A semimodule over a commutative ring R is like a module over R, but with
the additive structure of a commutative semigroup instead of an abelian group.
Explicitly, a semimodule over R (or R-semimodule) is a set A equipped with
binary operations + : A × A → A and · : R × A → A (with the latter also
denoted by juxtaposition) such that:

• + is commutative and associative,

• 1a = a,

• (rs)a = r(sa),

• (r + s)a = ra+ sa,

• r(a+ b) = ra+ rb,

for all r, s ∈ R and a, b ∈ A.

Proposition 1.1. For any R-semimodule A and any element a ∈ A, the fol-
lowing are equivalent:

1. a+ a = a,

2. 0a = a,
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3. ra = a for all r ∈ R,

4. 0x = a for some x ∈ A.

Proof. 3 =⇒ 2 and 2 =⇒ 4 are obvious.
2 =⇒ 3 because if 0a = a, then ra = r(0a) = (r0)a = 0a = a.
4 =⇒ 1 because if 0x = a, then a+ a = 0x+ 0x = (0 + 0)x = 0x = a.
1 =⇒ 2 because if a+a = a, then 0a = (1−1)a = a+(−1)a = a+a+(−1)a =

(1 + 1− 1)a = a.

For A an R-semimodule, I will define ZA ⊆ A to be the subset consisting of
elements of A which satisfy one of the four equivalent properties in proposition
1.1. I will define 0A : A → A to be the function 0A(x) = 0x. The following
propositions are easily proven:

Proposition 1.2. ZA is a sub-semimodule of A.

Proposition 1.3. 0A is an idempotent R-linear map (i.e. a projection), and
the image of 0A is ZA.

Since every element x ∈ ZA is idempotent (in the sense that x + x = x),
proposition 1.2 implies that ZA is a semilattice in the algebraic sense, and thus
also a semilattice in the order-theoretic sense. In other words, the relation ≤
defined by

a ≤ b ⇐⇒ there is some x ∈ ZA such that a+ x = b

is a partial order on ZA, and the least upper bound of any two elements with
respect to this partial order is their sum.

Proposition 1.4. For any R-semimodule A and any a ∈ ZA, the fiber of 0A
at a, i.e. the subset {x ∈ A | 0x = a}, is an R-module with a as its additive
identity.

Proof. I will denote the subset in question as MA(a). It is easy to show that
MA(a) is closed under addition and scalar multiplication, and is thus a sub-
semimodule of A. Moreover, for any x ∈ MA(a), one has a + x = x, (−1)x ∈
MA(a), and x+ (−1)x = a, so MA(a) is in fact an R-module.

Since the domain of any function is a disjoint union of its fibers, proposition
1.4 implies that every R-semimodule is a disjoint union of R-modules.

The next three lemmas show that any relationship a ≤ b with a, b ∈ ZA can
be lifted to a map from MA(a) to MA(b) in a functorial way.

Proposition 1.5. For any R-semimodule A, and any a, b ∈ ZA such that a ≤ b,
there is a well-defined R-linear map MA(a, b) : MA(a) → MA(b) defined by
MA(a, b)(x) = x+ z, where z is some element of ZA such that a+ z = b.
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Proof. If z and z′ are elements of ZA such that a+z = a+z′ = b, and x ∈ MA(a),
then x+ z = x+ a+ z = x+ a+ z′ = x+ z′. Thus MA(a, b) is well-defined in
the sense that it does not depend on the choice of z.

If x ∈ MA(a) and z ∈ ZA such that a + z = b, then 0(x + z) = 0x + 0z =
a+z = b, so x+z ∈ MA(b). Thus MA(a, b) does in fact map MA(a) into MA(b).

Lastly, MA(a, b) is an R-linear map:

MA(a, b)(x+ y) = x+ y + z = x+ y + z + z =

x+ z + y + z = MA(a, b)(x) +MA(a, b)(y).

MA(a, b)(rx) = rx+ z = rx+ rz = r(x+ z) = rMA(a, b)(x).

Proposition 1.6. For any R-semimodule A and any a ∈ ZA, the map MA(a, a) :
MA(a) → MA(a) is the identity.

Proof. By definition, MA(a, a)(x) = x + z where z is an element of ZA such
that a + z = a. The choice of z does not matter, so we can take z = a. Then
MA(a, a)(x) = x+ a = x, since x ∈ MA(a).

Proposition 1.7. For any R-semimodule A and any a, b, c ∈ ZA such that
a ≤ b ≤ c, MA(b, c) ◦MA(a, b) = MA(a, c).

Proof. Let z, z′ be elements of ZA such that a+ z = b and b+ z′ = c. Note that
a+ z+ z′ = c. Therefore, MA(b, c)(MA(a, b)(x)) = MA(b, c)(x+ z) = x+ z+ z′,
and MA(a, c)(x) = x+ z + z′.

I have constructed, for every R-semimodule A, a functor MA : ZA → RMod,
where ZA is viewed as a thin category and RMod is the category of R-modules
and R-linear maps. This construction extends to a functor from the category
of R-semimodules to a certain category of functors, as I will lay out in the next
four lemmas.

Proposition 1.8. For any R-linear map f : A → B between semimodules, and
any a ∈ ZA, f(a) ∈ ZB. In other words, f restricts to a homomorphism from
ZA to ZB.

Proposition 1.9. For any R-linear map f : A → B between semimodules,
there is a natural transformation f∗ : MA → MB ◦ f ,

ZA ZB

RMod

f

MA MB

f∗

such that the component of f∗ at point a ∈ ZA is simply the restriction of f to
MA(a).
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Proof. For this to be well-defined, the restriction of f to MA(a) must produce
a map into MB(f(a)). Indeed, if x is such that 0x = a, then 0f(x) = f(0x) =
f(a).

The naturality condition for f∗ states that, for every a, a′ ∈ ZA such that
a ≤ a′, the following square commutes:

MA(a) MA(a
′)

MB(f(a)) MB(f(a
′)).

MA(a,a′)

f f

MB(f(a),f(a′))

To this end, let z be some element of ZA such that a+ z = a′, and let x be
any element of MA(a). Then

f(MA(a, a
′)(x)) = f(x+ z) = f(x) + f(z), and

MB(f(a), f(a
′))(f(x)) = f(x) + f(z),

where the second equation is justified by the fact that f(a) + f(z) = f(a′).

Proposition 1.10. Let A be any R-semimodule, and let i be the identity map
on A. Then i∗ is the identity natural transformation on MA.

Proposition 1.11. Let A, B, and C be R-semimodules, and let f : A → B and
g : B → C be R-linear maps. Then (g ◦ f)∗ = g∗f ◦ f∗, where g∗f : MB ◦ f →
MC ◦ g ◦ f is the “whiskering” of g∗ with f , i.e. the natural transformation
whose component at a ∈ ZA is the restriction of g to MB(f(a)).

Proof. The component of (g ◦ f)∗ at a ∈ ZA is the restriction of g ◦ f to MA(a),
and the component of g∗f ◦ f∗ at a ∈ ZA is composite of the restriction of g to
MB(f(a)) with the restriction of f to MA(a). These are clearly equal.

Given some category C, I will define Net(C) to be the category

• whose objects are pairs (X,F ), where X is some semilattice and F : X →
C is a functor,

• and where a morphism from (X,F ) to (X ′, F ′) is a pair (g, τ), where
g : X → X ′ is a map of semilattices and τ : F → F ′ ◦ g is a natural
transformation.

Composition in Net(C) is defined in a straightforward way involving “whisker-
ing.” (I will omit the proof that this is in fact a category.) I will call the objects
of Net(C) “nets” by analogy with another use of this term: in topology, a net
is a map from a directed set into a space, and similarly, an object of Net(C) is
a map from a semilattice (a specific type of directed set) into C.

In propositions 1.8 through 1.11, I have shown that there is a functor from
R Semimod (the category of R-semimodules) to Net(RMod), whose value at a
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semimodule A is the pair (ZA,MA), and whose value at a map of semimodules
f : A → B is the pair (f, f∗). I will denote this functor as Struct : R Semimod →
Net(RMod), because it maps an R-semimodule to its “internal structure.”

The structure theorem for semimodules over rings states that (for any com-
mutative ring R) the functor Struct is an equivalence of categories, or in other
words, R-semimodules are equivalent to nets of R-modules in a functorial way.
In the following two sections, I will prove this theorem by explicitly construct-
ing a functor from Net(RMod) to R Semimod and showing that it is inverse to
Struct.

2 From nets of modules to semimodules

Proposition 2.1. For any semilattice X and any functor F : X → RMod, the
disjoint union

⨿F =
∐
x∈X

F (x)

is an R-semimodule, with scalar multiplication defined in the obvious way and
addition defined as follows: for a ∈ F (x) and b ∈ F (y), a+ b = F (x, x+y)(a)+
F (y, x+ y)(b), where the addition on the right is in F (x+ y).

Proof. The identities 1a = a, (rs)a = r(sa) and (r+s)a = ra+sa hold trivially.
The addition operation on ⨿F is commutative because addition in X and in
F (x+ y) is commutative. The left distributive law holds because for any r ∈ R,
a ∈ F (x), and b ∈ F (y),

r(a+ b) = r(F (x, x+ y)(a) + F (y, x+ y)(b)) =

F (x, x+ y)(ra) + F (y, x+ y)(rb) = ra+ rb.

Lastly, the proof of associativity is also rather routine, and makes use of the
functoriality of F .

Proposition 2.2. For any morphism (g, τ) : (X,F ) → (X ′, F ′) in Net(RMod),
there is a map of semimodules τ∗ : ⨿F → ⨿F ′ defined by τ∗(a ∈ F (x)) = τx(a).

Proof. τ∗ preserves scalar multiplication because, for any r ∈ R and a ∈ F (x) ⊆
⨿F , τ∗(ra) = τx(ra) = rτx(a) = rτ∗(a).

τ∗ preserves addition because, for any a ∈ F (x) and b ∈ F (y),

τ∗(a+ b) = τ∗(F (x, x+ y)(a) + F (y, x+ y)(b))

= τx+y(F (x, x+ y)(a) + F (y, x+ y)(b))

= τx+y(F (x, x+ y)(a)) + τx+y(F (y, x+ y)(b))

= F ′(g(x), g(x+ y))(τx(a)) + F ′(g(y), g(x+ y))(τy(b))

= F ′(g(x), g(x) + g(y))(τx(a)) + F ′(g(y), g(x) + g(y))(τy(b))

= τx(a) + τy(b)

= τ∗(a) + τ∗(b).
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Proposition 2.3. Let X be a semilattice, F : X → RMod a functor, and
i : F → F the identity natural transformation on F . Then i∗ : ⨿F → ⨿F is the
identity function on ⨿F .

Proposition 2.4. Let (X,F )
(g,τ)−−−→ (X ′, F ′)

(g′,τ ′)−−−−→ (X ′′, F ′′) be a chain of
morphisms in Net(RMod). Then (τ ′g ◦ τ)∗ = τ ′∗ ◦ τ∗.

Proof. Let a be an element of ⨿F such that a ∈ F (x), where x ∈ X. Then

(τ ′g ◦ τ)∗(a) = (τ ′g ◦ τ)x(a) = τ ′g(x)(τx(a)) = τ ′∗(τ∗(a)).

In propositions 2.1 through 2.4, I have constructed a functor Total : Net(RMod) →
R Semimod defined on objects as Total(X,F ) = ⨿F and on morphisms as
Total(g, τ) = τ∗. In the next section, I will show that Struct and Total are
inverses, and thus constitute an equivalence of categories between R Semimod
and Net(RMod).

3 Equivalence of categories

Proposition 3.1. For any R-semimodule A, Total(Struct(A)) = A.

Proof. Recall that Struct(A) is the object (ZA,MA) where ZA and MA are
defined as in section 1. So Total(Struct(A)) is, as a set, the disjoint union∐

x∈ZA

MA(x).

As previously noted, the subsets of the form MA(x) are pairwise disjoint and
their union is all of A, so the expression above is clearly naturally isomorphic,
if not equal, to A.

The addition operation on Total(Struct(A)) is defined by

a+ b = MA(x, x+ y)(a) +MA(y, x+ y)(b)

for a ∈ MA(x) and b ∈ MA(y). This is the same as the addition operation on
A, because

MA(x, x+ y)(a) +MA(y, x+ y)(b) = a+ y + b+ x = a+ x+ b+ y = a+ b.

Proposition 3.2. For any object (X,F ) ∈ Net(RMod), Struct(Total(X,F )) =
(X,F ).

Proof. By definition, Struct(Total(X,F )) = (Z⨿F ,M⨿F ). Z⨿F is the subset
{x ∈ ⨿F | 0x = 0}, which is simply the subset containing the additive identity
of each module in the image of F . This set can be naturally identified with X
by equating each x ∈ X with the additive identity of F (x).

Under this identification, M⨿F is the functor taking x ∈ X to the set of
elements a ∈ ⨿F such that 0a is the additive identity of F (x). Clearly, this is
the case if and only a ∈ F (x). In other words, M⨿F takes x ∈ X to F (x), so
M⨿F = F .
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Proposition 3.3. For any morphism of R-semimodules f : A → B, Total(Struct(f)) =
f .

Proof. Struct(f) = (f, f∗), so Total(Struct(f)) = (f∗)∗. By definition, for
a ∈ MA(x), (f

∗)∗(a) = (f∗)x(a) = f(a).

Proposition 3.4. For any morphism (g, τ) : (X,F ) → (X ′, F ′) in Net(RMod),
Struct(Total(g, τ)) = (g, τ).

Proof. Total(g, τ) = τ∗, so Struct(Total(g, τ)) = (τ∗, (τ∗)
∗). τ∗ maps the ad-

ditive identity of F (x) to the additive identity of F ′(g(x)), so by the usual
identification, τ∗ is the same as g when evaluated on elements of X. And (τ∗)

∗

is the natural transformation whose component at x ∈ X is the restriction of τ∗
to F (x) ⊆ ⨿F . But on F (x), τ∗ is simply defined as τx, so (τ∗)

∗ = τ .
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