A Structure Theorem for Semimodules over Rings

Owen Bechtel

November 28, 2023

Abstract

Modules over rings are some of the most well-studied structures in algebra. By slightly weakening the definition of a module - removing the requirement of an additive identity and additive inverses-one obtains the notion of a semimodule. The structure theorem for semimodules over rings, proven in this paper, states that there is a correspondence between semimodules over a commutative ring R and functors $F: X \rightarrow R$ Mod, where X is some semilattice. (I call such functors "nets of R-modules"; sheaves of R-modules on a topological space are a special case.) Specifically, there is an equivalence of categories between the category of R semimodules and the category of nets of R-modules.

1 From semimodules to nets of modules

A semimodule over a commutative ring R is like a module over R, but with the additive structure of a commutative semigroup instead of an abelian group. Explicitly, a semimodule over R (or R-semimodule) is a set A equipped with binary operations $+: A \times A \rightarrow A$ and $\cdot: R \times A \rightarrow A$ (with the latter also denoted by juxtaposition) such that:

- + is commutative and associative,
- $1 a=a$,
- $(r s) a=r(s a)$,
- $(r+s) a=r a+s a$,
- $r(a+b)=r a+r b$,
for all $r, s \in R$ and $a, b \in A$.
Proposition 1.1. For any R-semimodule A and any element $a \in A$, the following are equivalent:

1. $a+a=a$,
2. $0 a=a$,
3. $r a=a$ for all $r \in R$,
4. $0 x=a$ for some $x \in A$.

Proof. $3 \Longrightarrow 2$ and $2 \Longrightarrow 4$ are obvious.
$2 \Longrightarrow 3$ because if $0 a=a$, then $r a=r(0 a)=(r 0) a=0 a=a$.
$4 \Longrightarrow 1$ because if $0 x=a$, then $a+a=0 x+0 x=(0+0) x=0 x=a$.
$1 \Longrightarrow 2$ because if $a+a=a$, then $0 a=(1-1) a=a+(-1) a=a+a+(-1) a=$ $(1+1-1) a=a$.

For A an R-semimodule, I will define $Z_{A} \subseteq A$ to be the subset consisting of elements of A which satisfy one of the four equivalent properties in proposition 1.1. I will define $0_{A}: A \rightarrow A$ to be the function $0_{A}(x)=0 x$. The following propositions are easily proven:

Proposition 1.2. Z_{A} is a sub-semimodule of A.
Proposition 1.3. 0_{A} is an idempotent R-linear map (i.e. a projection), and the image of 0_{A} is Z_{A}.

Since every element $x \in Z_{A}$ is idempotent (in the sense that $x+x=x$), proposition 1.2 implies that Z_{A} is a semilattice in the algebraic sense, and thus also a semilattice in the order-theoretic sense. In other words, the relation \leq defined by

$$
a \leq b \Longleftrightarrow \text { there is some } x \in Z_{A} \text { such that } a+x=b
$$

is a partial order on Z_{A}, and the least upper bound of any two elements with respect to this partial order is their sum.

Proposition 1.4. For any R-semimodule A and any $a \in Z_{A}$, the fiber of 0_{A} at a, i.e. the subset $\{x \in A \mid 0 x=a\}$, is an R-module with a as its additive identity.

Proof. I will denote the subset in question as $M_{A}(a)$. It is easy to show that $M_{A}(a)$ is closed under addition and scalar multiplication, and is thus a subsemimodule of A. Moreover, for any $x \in M_{A}(a)$, one has $a+x=x,(-1) x \in$ $M_{A}(a)$, and $x+(-1) x=a$, so $M_{A}(a)$ is in fact an R-module.

Since the domain of any function is a disjoint union of its fibers, proposition 1.4 implies that every R-semimodule is a disjoint union of R-modules.

The next three lemmas show that any relationship $a \leq b$ with $a, b \in Z_{A}$ can be lifted to a map from $M_{A}(a)$ to $M_{A}(b)$ in a functorial way.

Proposition 1.5. For any R-semimodule A, and any $a, b \in Z_{A}$ such that $a \leq b$, there is a well-defined R-linear map $M_{A}(a, b): M_{A}(a) \rightarrow M_{A}(b)$ defined by $M_{A}(a, b)(x)=x+z$, where z is some element of Z_{A} such that $a+z=b$.

Proof. If z and z^{\prime} are elements of Z_{A} such that $a+z=a+z^{\prime}=b$, and $x \in M_{A}(a)$, then $x+z=x+a+z=x+a+z^{\prime}=x+z^{\prime}$. Thus $M_{A}(a, b)$ is well-defined in the sense that it does not depend on the choice of z.

If $x \in M_{A}(a)$ and $z \in Z_{A}$ such that $a+z=b$, then $0(x+z)=0 x+0 z=$ $a+z=b$, so $x+z \in M_{A}(b)$. Thus $M_{A}(a, b)$ does in fact map $M_{A}(a)$ into $M_{A}(b)$.

Lastly, $M_{A}(a, b)$ is an R-linear map:

$$
\begin{gathered}
M_{A}(a, b)(x+y)=x+y+z=x+y+z+z= \\
x+z+y+z=M_{A}(a, b)(x)+M_{A}(a, b)(y) . \\
M_{A}(a, b)(r x)=r x+z=r x+r z=r(x+z)=r M_{A}(a, b)(x) .
\end{gathered}
$$

Proposition 1.6. For any R-semimodule A and any $a \in Z_{A}$, the map $M_{A}(a, a)$: $M_{A}(a) \rightarrow M_{A}(a)$ is the identity.

Proof. By definition, $M_{A}(a, a)(x)=x+z$ where z is an element of Z_{A} such that $a+z=a$. The choice of z does not matter, so we can take $z=a$. Then $M_{A}(a, a)(x)=x+a=x$, since $x \in M_{A}(a)$.

Proposition 1.7. For any R-semimodule A and any $a, b, c \in Z_{A}$ such that $a \leq b \leq c, M_{A}(b, c) \circ M_{A}(a, b)=M_{A}(a, c)$.

Proof. Let z, z^{\prime} be elements of Z_{A} such that $a+z=b$ and $b+z^{\prime}=c$. Note that $a+z+z^{\prime}=c$. Therefore, $M_{A}(b, c)\left(M_{A}(a, b)(x)\right)=M_{A}(b, c)(x+z)=x+z+z^{\prime}$, and $M_{A}(a, c)(x)=x+z+z^{\prime}$.

I have constructed, for every R-semimodule A, a functor $M_{A}: Z_{A} \rightarrow R \operatorname{Mod}$, where Z_{A} is viewed as a thin category and R Mod is the category of R-modules and R-linear maps. This construction extends to a functor from the category of R-semimodules to a certain category of functors, as I will lay out in the next four lemmas.

Proposition 1.8. For any R-linear map $f: A \rightarrow B$ between semimodules, and any $a \in Z_{A}, f(a) \in Z_{B}$. In other words, f restricts to a homomorphism from Z_{A} to Z_{B}.

Proposition 1.9. For any R-linear map $f: A \rightarrow B$ between semimodules, there is a natural transformation $f^{*}: M_{A} \rightarrow M_{B} \circ f$,

such that the component of f^{*} at point $a \in Z_{A}$ is simply the restriction of f to $M_{A}(a)$.

Proof. For this to be well-defined, the restriction of f to $M_{A}(a)$ must produce a map into $M_{B}(f(a))$. Indeed, if x is such that $0 x=a$, then $0 f(x)=f(0 x)=$ $f(a)$.

The naturality condition for f^{*} states that, for every $a, a^{\prime} \in Z_{A}$ such that $a \leq a^{\prime}$, the following square commutes:

To this end, let z be some element of Z_{A} such that $a+z=a^{\prime}$, and let x be any element of $M_{A}(a)$. Then

$$
\begin{aligned}
f\left(M_{A}\left(a, a^{\prime}\right)(x)\right)=f(x+z) & =f(x)+f(z), \text { and } \\
M_{B}\left(f(a), f\left(a^{\prime}\right)\right)(f(x)) & =f(x)+f(z)
\end{aligned}
$$

where the second equation is justified by the fact that $f(a)+f(z)=f\left(a^{\prime}\right)$.
Proposition 1.10. Let A be any R-semimodule, and let i be the identity map on A. Then i^{*} is the identity natural transformation on M_{A}.

Proposition 1.11. Let A, B, and C be R-semimodules, and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be R-linear maps. Then $(g \circ f)^{*}=g^{*} f \circ f^{*}$, where $g^{*} f: M_{B} \circ f \rightarrow$ $M_{C} \circ g \circ f$ is the "whiskering" of g^{*} with f, i.e. the natural transformation whose component at $a \in Z_{A}$ is the restriction of g to $M_{B}(f(a))$.

Proof. The component of $(g \circ f)^{*}$ at $a \in Z_{A}$ is the restriction of $g \circ f$ to $M_{A}(a)$, and the component of $g^{*} f \circ f^{*}$ at $a \in Z_{A}$ is composite of the restriction of g to $M_{B}(f(a))$ with the restriction of f to $M_{A}(a)$. These are clearly equal.

Given some category C, I will define $\operatorname{Net}(C)$ to be the category

- whose objects are pairs (X, F), where X is some semilattice and $F: X \rightarrow$ C is a functor,
- and where a morphism from (X, F) to $\left(X^{\prime}, F^{\prime}\right)$ is a pair (g, τ), where $g: X \rightarrow X^{\prime}$ is a map of semilattices and $\tau: F \rightarrow F^{\prime} \circ g$ is a natural transformation.

Composition in $\operatorname{Net}(C)$ is defined in a straightforward way involving "whiskering." (I will omit the proof that this is in fact a category.) I will call the objects of $\operatorname{Net}(C)$ "nets" by analogy with another use of this term: in topology, a net is a map from a directed set into a space, and similarly, an object of $\operatorname{Net}(C)$ is a map from a semilattice (a specific type of directed set) into C.

In propositions 1.8 through 1.11. I have shown that there is a functor from R Semimod (the category of R-semimodules) to $\operatorname{Net}(R \operatorname{Mod})$, whose value at a
semimodule A is the pair $\left(Z_{A}, M_{A}\right)$, and whose value at a map of semimodules $f: A \rightarrow B$ is the pair $\left(f, f^{*}\right)$. I will denote this functor as Struct : R Semimod \rightarrow $\operatorname{Net}(R$ Mod), because it maps an R-semimodule to its "internal structure."

The structure theorem for semimodules over rings states that (for any commutative ring R) the functor Struct is an equivalence of categories, or in other words, R-semimodules are equivalent to nets of R-modules in a functorial way. In the following two sections, I will prove this theorem by explicitly constructing a functor from $\operatorname{Net}(R \mathrm{Mod})$ to R Semimod and showing that it is inverse to Struct.

2 From nets of modules to semimodules

Proposition 2.1. For any semilattice X and any functor $F: X \rightarrow R$ Mod, the disjoint union

$$
\amalg F=\coprod_{x \in X} F(x)
$$

is an R-semimodule, with scalar multiplication defined in the obvious way and addition defined as follows: for $a \in F(x)$ and $b \in F(y), a+b=F(x, x+y)(a)+$ $F(y, x+y)(b)$, where the addition on the right is in $F(x+y)$.

Proof. The identities $1 a=a,(r s) a=r(s a)$ and $(r+s) a=r a+s a$ hold trivially. The addition operation on $\amalg F$ is commutative because addition in X and in $F(x+y)$ is commutative. The left distributive law holds because for any $r \in R$, $a \in F(x)$, and $b \in F(y)$,

$$
\begin{gathered}
r(a+b)=r(F(x, x+y)(a)+F(y, x+y)(b))= \\
F(x, x+y)(r a)+F(y, x+y)(r b)=r a+r b
\end{gathered}
$$

Lastly, the proof of associativity is also rather routine, and makes use of the functoriality of F.

Proposition 2.2. For any morphism $(g, \tau):(X, F) \rightarrow\left(X^{\prime}, F^{\prime}\right)$ in $\operatorname{Net}(R \operatorname{Mod})$, there is a map of semimodules $\tau_{*}: \amalg F \rightarrow \amalg F^{\prime}$ defined by $\tau_{*}(a \in F(x))=\tau_{x}(a)$.

Proof. τ_{*} preserves scalar multiplication because, for any $r \in R$ and $a \in F(x) \subseteq$ $\amalg F, \tau_{*}(r a)=\tau_{x}(r a)=r \tau_{x}(a)=r \tau_{*}(a)$.
τ_{*} preserves addition because, for any $a \in F(x)$ and $b \in F(y)$,

$$
\begin{aligned}
\tau_{*}(a+b) & =\tau_{*}(F(x, x+y)(a)+F(y, x+y)(b)) \\
& =\tau_{x+y}(F(x, x+y)(a)+F(y, x+y)(b)) \\
& =\tau_{x+y}(F(x, x+y)(a))+\tau_{x+y}(F(y, x+y)(b)) \\
& =F^{\prime}(g(x), g(x+y))\left(\tau_{x}(a)\right)+F^{\prime}(g(y), g(x+y))\left(\tau_{y}(b)\right) \\
& =F^{\prime}(g(x), g(x)+g(y))\left(\tau_{x}(a)\right)+F^{\prime}(g(y), g(x)+g(y))\left(\tau_{y}(b)\right) \\
& =\tau_{x}(a)+\tau_{y}(b) \\
& =\tau_{*}(a)+\tau_{*}(b)
\end{aligned}
$$

Proposition 2.3. Let X be a semilattice, $F: X \rightarrow R$ Mod a functor, and $i: F \rightarrow F$ the identity natural transformation on F. Then $i_{*}: \amalg F \rightarrow \amalg F$ is the identity function on $\amalg F$.

Proposition 2.4. Let $(X, F) \xrightarrow{(g, \tau)}\left(X^{\prime}, F^{\prime}\right) \xrightarrow{\left(g^{\prime}, \tau^{\prime}\right)}\left(X^{\prime \prime}, F^{\prime \prime}\right)$ be a chain of morphisms in $\operatorname{Net}(R \mathrm{Mod})$. Then $\left(\tau^{\prime} g \circ \tau\right)_{*}=\tau_{*}^{\prime} \circ \tau_{*}$.
Proof. Let a be an element of $\amalg F$ such that $a \in F(x)$, where $x \in X$. Then

$$
\left(\tau^{\prime} g \circ \tau\right)_{*}(a)=\left(\tau^{\prime} g \circ \tau\right)_{x}(a)=\tau_{g(x)}^{\prime}\left(\tau_{x}(a)\right)=\tau_{*}^{\prime}\left(\tau_{*}(a)\right)
$$

In propositions 2.1 through 2.4 I have constructed a functor Total : Net $(R \operatorname{Mod}) \rightarrow$ R Semimod defined on objects as $\operatorname{Total}(X, F)=\amalg F$ and on morphisms as $\operatorname{Total}(g, \tau)=\tau_{*}$. In the next section, I will show that Struct and Total are inverses, and thus constitute an equivalence of categories between R Semimod and $\operatorname{Net}(R \mathrm{Mod})$.

3 Equivalence of categories

Proposition 3.1. For any R-semimodule A, $\operatorname{Total}(\operatorname{Struct}(A))=A$.
Proof. Recall that $\operatorname{Struct}(A)$ is the object $\left(Z_{A}, M_{A}\right)$ where Z_{A} and M_{A} are defined as in section 1. So $\operatorname{Total}(\operatorname{Struct}(A))$ is, as a set, the disjoint union

$$
\coprod_{x \in Z_{A}} M_{A}(x)
$$

As previously noted, the subsets of the form $M_{A}(x)$ are pairwise disjoint and their union is all of A, so the expression above is clearly naturally isomorphic, if not equal, to A.

The addition operation on $\operatorname{Total}(\operatorname{Struct}(A))$ is defined by

$$
a+b=M_{A}(x, x+y)(a)+M_{A}(y, x+y)(b)
$$

for $a \in M_{A}(x)$ and $b \in M_{A}(y)$. This is the same as the addition operation on A, because

$$
M_{A}(x, x+y)(a)+M_{A}(y, x+y)(b)=a+y+b+x=a+x+b+y=a+b
$$

Proposition 3.2. For any object $(X, F) \in \operatorname{Net}(R \operatorname{Mod})$, $\operatorname{Struct}(\operatorname{Total}(X, F))=$ (X, F).
Proof. By definition, $\operatorname{Struct}(\operatorname{Total}(X, F))=\left(Z_{\amalg F}, M_{\amalg F}\right)$. $Z_{\amalg F}$ is the subset $\{x \in \amalg F \mid 0 x=0\}$, which is simply the subset containing the additive identity of each module in the image of F. This set can be naturally identified with X by equating each $x \in X$ with the additive identity of $F(x)$.

Under this identification, $M_{\amalg F}$ is the functor taking $x \in X$ to the set of elements $a \in \amalg F$ such that $0 a$ is the additive identity of $F(x)$. Clearly, this is the case if and only $a \in F(x)$. In other words, $M_{\amalg F}$ takes $x \in X$ to $F(x)$, so $M_{\amalg F}=F$.

Proposition 3.3. For any morphism of R-semimodules $f: A \rightarrow B$, $\operatorname{Total}(\operatorname{Struct}(f))=$ f.

Proof. Struct $(f)=\left(f, f^{*}\right)$, so $\operatorname{Total}(\operatorname{Struct}(f))=\left(f^{*}\right)_{*}$. By definition, for $a \in M_{A}(x),\left(f^{*}\right)_{*}(a)=\left(f^{*}\right)_{x}(a)=f(a)$.

Proposition 3.4. For any morphism $(g, \tau):(X, F) \rightarrow\left(X^{\prime}, F^{\prime}\right)$ in $\operatorname{Net}(R \operatorname{Mod})$, $\operatorname{Struct}(\operatorname{Total}(g, \tau))=(g, \tau)$.

Proof. $\operatorname{Total}(g, \tau)=\tau_{*}$, so $\operatorname{Struct}(\operatorname{Total}(g, \tau))=\left(\tau_{*},\left(\tau_{*}\right)^{*}\right) . \tau_{*}$ maps the additive identity of $F(x)$ to the additive identity of $F^{\prime}(g(x))$, so by the usual identification, τ_{*} is the same as g when evaluated on elements of X. And $\left(\tau_{*}\right)^{*}$ is the natural transformation whose component at $x \in X$ is the restriction of τ_{*} to $F(x) \subseteq \amalg F$. But on $F(x), \tau_{*}$ is simply defined as τ_{x}, so $\left(\tau_{*}\right)^{*}=\tau$.

